cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A100484 The primes doubled; Even semiprimes.

Original entry on oeis.org

4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 22 2004

Keywords

Comments

Essentially the same as A001747.
Right edge of the triangle in A065342. - Reinhard Zumkeller, Jan 30 2012
A253046(a(n)) > a(n). - Reinhard Zumkeller, Dec 26 2014
Apart from first term, these are the tau2-primes as defined in [Anderson, Frazier] and [Lanterman]. - Michel Marcus, May 15 2019
For every positive integer b and each m in this sequence b^(m-1) == b (mod m). - Florian Baur, Nov 26 2021

Crossrefs

Subsequence of A091376. After the initial 4 also a subsequence of A039956.
Cf. A001748, A253046, A353478 (characteristic function).
Row 3 of A286625, column 3 of A286623.

Programs

Formula

a(n) = 2 * A000040(n).
a(n) = A001747(n+1).
n>1: A000005(a(n)) = 4; A000203(a(n)) = 3*A008864(n); A000010(a(n)) = A006093(n); intersection of A001358 and A005843.
a(n) = A116366(n-1, n-1) for n>1. - Reinhard Zumkeller, Feb 06 2006
a(n) = A077017(n+1), n>1. - R. J. Mathar, Sep 02 2008
A078834(a(n)) = A000040(n). - Reinhard Zumkeller, Sep 19 2011
a(n) = A087112(n, 1). - Reinhard Zumkeller, Nov 25 2012
A000203(a(n)) = 3*n/2 + 3, n > 1. - Wesley Ivan Hurt, Sep 07 2013

Extensions

Simpler definition.

A052147 a(n) = prime(n) + 2.

Original entry on oeis.org

4, 5, 7, 9, 13, 15, 19, 21, 25, 31, 33, 39, 43, 45, 49, 55, 61, 63, 69, 73, 75, 81, 85, 91, 99, 103, 105, 109, 111, 115, 129, 133, 139, 141, 151, 153, 159, 165, 169, 175, 181, 183, 193, 195, 199, 201, 213, 225, 229, 231, 235, 241, 243, 253, 259
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk), Jan 24 2000

Keywords

Comments

A048974, A052147, A067187 and A088685 are very similar after dropping terms less than 13. - Eric W. Weisstein, Oct 10 2003
A117530(n,2) = a(n) for n>1. - Reinhard Zumkeller, Mar 26 2006
a(n) = A000040(n) + 2 = A008864(n) + 1 = A113395(n) - 1 = A175221(n) - 2 = A175222(n) - 3 = A139049(n) - 4 = A175223(n) - 5 = A175224(n) - 6 = A140353(n) - 7 = A175225(n) - 8. - Jaroslav Krizek, Mar 06 2010
Left edge of the triangle in A065342. - Reinhard Zumkeller, Jan 30 2012
Union of A006512 and A107986. - David James Sycamore, Jul 08 2018

Crossrefs

A139690 is a subsequence.

Programs

A087112 Triangle in which the n-th row contains n distinct semiprimes not listed previously with all prime factors from among the first n primes.

Original entry on oeis.org

4, 6, 9, 10, 15, 25, 14, 21, 35, 49, 22, 33, 55, 77, 121, 26, 39, 65, 91, 143, 169, 34, 51, 85, 119, 187, 221, 289, 38, 57, 95, 133, 209, 247, 323, 361, 46, 69, 115, 161, 253, 299, 391, 437, 529, 58, 87, 145, 203, 319, 377, 493, 551, 667, 841, 62, 93, 155, 217, 341, 403, 527, 589, 713, 899, 961
Offset: 1

Views

Author

Ray Chandler, Aug 21 2003

Keywords

Comments

Terms through row n, sorted, will provide terms for A077553 through row n*(n+1)/2.

Examples

			Triangle begins:
   4;
   6,   9;
  10,  15,  25;
  14,  21,  35,  49;
  22,  33,  55,  77, 121;
  26,  39,  65,  91, 143, 169;
		

Crossrefs

Cf. A100484 (left edge), A001248 (right edge), A143215 (row sums), A219603 (central terms of odd-indexed rows); A000040, A065342.

Programs

  • Haskell
    a087112 n k = a087112_tabl !! (n-1) !! (k-1)
    a087112_row n = map (* last ps) ps where ps = take n a000040_list
    a087112_tabl = map a087112_row [1..]
    -- Reinhard Zumkeller, Nov 25 2012
    
  • Maple
    T := (n, k) -> ithprime(n) * ithprime(k):
    seq(print(seq(T(n, k), k = 1..n)), n = 1..11);  # Peter Luschny, Jun 25 2024
  • Mathematica
    Table[ Prime[j]*Prime[k], {j, 11}, {k, j}] // Flatten (* Robert G. Wilson v, Feb 06 2017 *)
  • PARI
    A087112(n) = { n--; my(c = (sqrtint(8*n + 1) - 1) \ 2); (prime(1+c) * prime(1+(n-binomial(1+c, 2)))); }; \\ Antti Karttunen, Feb 29 2024

Formula

The n-th row consists of n terms, prime(n)*prime(i), i=1..n.
T(n, k) = A000040(n) * A000040(k).
For n >= 2, a(n) = A276086(A370121(n-1)). - Antti Karttunen, Feb 29 2024

A065305 Triangular array giving means of two odd primes: T(n,k) = (n-th prime + k-th prime)/2, n >= k >= 2.

Original entry on oeis.org

3, 4, 5, 5, 6, 7, 7, 8, 9, 11, 8, 9, 10, 12, 13, 10, 11, 12, 14, 15, 17, 11, 12, 13, 15, 16, 18, 19, 13, 14, 15, 17, 18, 20, 21, 23, 16, 17, 18, 20, 21, 23, 24, 26, 29, 17, 18, 19, 21, 22, 24, 25, 27, 30, 31, 20, 21, 22, 24, 25, 27, 28, 30, 33, 34, 37, 22, 23, 24, 26, 27, 29, 30
Offset: 2

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 29 2001

Keywords

Examples

			3; 4,5; 5,6,7; 7,8,9,11; ...
		

Crossrefs

Cf. A065306.
a(n, k) = A065342(n, k)/2 [but note different offsets]
Cf. A098090 (left edge), A065091 (right edge), A000040.

Programs

  • Haskell
    import Data.List (inits)
    a065305 n k = a065305_tabl !! (n-2) !! (k - 1)
    a065305_row n = a065305_tabl !! (n-2)
    a065305_tabl = zipWith (map . (flip div 2 .) . (+))
                           a065091_list $ tail $ inits a065091_list
    -- Reinhard Zumkeller, Aug 02 2015, Jan 30 2012
  • Maple
    seq(seq((ithprime(i)+ithprime(j))/2,j=2..i),i=2..20)

A116366 Triangle read by rows: even numbers as sums of two odd primes.

Original entry on oeis.org

6, 8, 10, 10, 12, 14, 14, 16, 18, 22, 16, 18, 20, 24, 26, 20, 22, 24, 28, 30, 34, 22, 24, 26, 30, 32, 36, 38, 26, 28, 30, 34, 36, 40, 42, 46, 32, 34, 36, 40, 42, 46, 48, 52, 58, 34, 36, 38, 42, 44, 48, 50, 54, 60, 62, 40, 42, 44, 48, 50, 54, 56, 60, 66, 68, 74, 44, 46, 48, 52, 54, 58, 60, 64, 70, 72, 78, 82
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 06 2006

Keywords

Comments

T(n,k) = 2*A065305(n,k) = A065342(n+1,k+1);
Row sums give A116367; central terms give A116368;
T(n,1) = A113935(n+1);
T(n,n-2) = A048448(n) for n>2;
T(n,n-1) = A001043(n) for n>1;
T(n,n) = A001747(n+2) = A100484(n+1).

Examples

			Triangle begins:
  6;
  8,  10;
  10, 12, 14;
  14, 16, 18, 22;
  16, 18, 20, 24, 26;
  20, 22, 24, 28, 30, 34;
  22, 24, 26, 30, 32, 36, 38;
  26, 28, 30, 34, 36, 40, 42, 46;
  32, 34, 36, 40, 42, 46, 48, 52, 58;
  34, 36, 38, 42, 44, 48, 50, 54, 60, 62;
  40, 42, 44, 48, 50, 54, 56, 60, 66, 68, 74;
  44, 46, 48, 52, 54, 58, 60, 64, 70, 72, 78, 82; etc. - _Bruno Berselli_, Aug 16 2013
		

Crossrefs

Programs

  • Magma
    [NthPrime(n+1)+NthPrime(k+1): k in [1..n], n in [1..15]]; // Bruno Berselli, Aug 16 2013
    
  • Mathematica
    Table[Prime[n+1] + Prime[k+1], {n,1,12}, {k,1,n}]//Flatten (* G. C. Greubel, May 12 2019 *)
  • PARI
    {T(n,k) = prime(n+1) + prime(k+1)}; \\ G. C. Greubel, May 12 2019
    
  • Sage
    [[nth_prime(n+1) + nth_prime(k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, May 12 2019

Formula

T(n,k) = prime(n+1) + prime(k+1), 1 <= k <= n.
Showing 1-5 of 5 results.