cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A116367 Sums of rows of the triangle in A116366.

Original entry on oeis.org

6, 18, 36, 70, 104, 158, 208, 282, 388, 468, 602, 728, 838, 984, 1174, 1382, 1536, 1772, 1986, 2170, 2448, 2698, 3008, 3386, 3684, 3940, 4258, 4530, 4868, 5528, 5910, 6370, 6712, 7340, 7710, 8234, 8776, 9258, 9832, 10424, 10866, 11658, 12128, 12694, 13180
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 06 2006

Keywords

Programs

  • GAP
    List([1..50], n-> Sum([1..n], k-> Primes[n+1] + Primes[k+1])); # G. C. Greubel, May 18 2019
  • Magma
    [(&+[NthPrime(n+1) + NthPrime(k+1): k in [1..n]]): n in [1..50]]; // G. C. Greubel, May 18 2019
    
  • Mathematica
    Table[Sum[Prime[n+1] + Prime[k+1], {k,1,n}], {n,1,50}] (* G. C. Greubel, May 18 2019 *)
  • PARI
    vector(50, n, sum(k=1,n, prime(n+1) + prime(k+1))) \\ G. C. Greubel, May 18 2019
    
  • Sage
    [sum(nth_prime(n+1) + nth_prime(k+1) for k in (1..n)) for n in (1..50)] # G. C. Greubel, May 18 2019
    

Formula

a(n) = Sum_{k=1..n} A116366(n,k).
a(n) = (n+1)*A000040(n+1) + A007504(n) - 2.

A116368 Central terms of the triangle in A116366.

Original entry on oeis.org

6, 12, 20, 30, 42, 54, 62, 76, 90, 102, 116, 130, 144, 154, 166, 190, 200, 218, 234, 246, 260, 276, 288, 320, 330, 342, 358, 372, 384, 408, 424, 448, 456, 486, 500, 516, 536, 550, 570, 588, 602, 624, 636, 654, 662, 690, 714, 730, 750, 774, 796, 810, 828, 850, 864, 882, 890, 918, 928
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 06 2006

Keywords

Examples

			For n=4, prime(2n) = prime(8) = 19, and prime(n+1) = prime(5) = 11, so a(4) = 19 + 11 = 30. - _Michael B. Porter_, Aug 15 2016
		

Crossrefs

Programs

  • GAP
    List([1..70], n-> Primes[2*n] + Primes[n+1]); # G. C. Greubel, May 18 2019
  • Magma
    [NthPrime(2*n) + NthPrime(n+1): n in [1..70]]; // G. C. Greubel, May 18 2019
    
  • Mathematica
    Table[Prime[2n] + Prime[n+1], {n, 1, 70}](* Terry D. Grant, Aug 15 2016 *)
  • PARI
    vector(70, n, prime(2*n) + prime(n+1)) \\ G. C. Greubel, May 18 2019
    
  • Sage
    [nth_prime(2*n) + nth_prime(n+1) for n in (1..70)] # G. C. Greubel, May 18 2019
    

Formula

a(n) = A000040(2n) + A000040(n+1).
a(n) = A116366(2*n-1, n).

A100484 The primes doubled; Even semiprimes.

Original entry on oeis.org

4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 22 2004

Keywords

Comments

Essentially the same as A001747.
Right edge of the triangle in A065342. - Reinhard Zumkeller, Jan 30 2012
A253046(a(n)) > a(n). - Reinhard Zumkeller, Dec 26 2014
Apart from first term, these are the tau2-primes as defined in [Anderson, Frazier] and [Lanterman]. - Michel Marcus, May 15 2019
For every positive integer b and each m in this sequence b^(m-1) == b (mod m). - Florian Baur, Nov 26 2021

Crossrefs

Subsequence of A091376. After the initial 4 also a subsequence of A039956.
Cf. A001748, A253046, A353478 (characteristic function).
Row 3 of A286625, column 3 of A286623.

Programs

Formula

a(n) = 2 * A000040(n).
a(n) = A001747(n+1).
n>1: A000005(a(n)) = 4; A000203(a(n)) = 3*A008864(n); A000010(a(n)) = A006093(n); intersection of A001358 and A005843.
a(n) = A116366(n-1, n-1) for n>1. - Reinhard Zumkeller, Feb 06 2006
a(n) = A077017(n+1), n>1. - R. J. Mathar, Sep 02 2008
A078834(a(n)) = A000040(n). - Reinhard Zumkeller, Sep 19 2011
a(n) = A087112(n, 1). - Reinhard Zumkeller, Nov 25 2012
A000203(a(n)) = 3*n/2 + 3, n > 1. - Wesley Ivan Hurt, Sep 07 2013

Extensions

Simpler definition.

A001043 Numbers that are the sum of 2 successive primes.

Original entry on oeis.org

5, 8, 12, 18, 24, 30, 36, 42, 52, 60, 68, 78, 84, 90, 100, 112, 120, 128, 138, 144, 152, 162, 172, 186, 198, 204, 210, 216, 222, 240, 258, 268, 276, 288, 300, 308, 320, 330, 340, 352, 360, 372, 384, 390, 396, 410, 434, 450, 456, 462, 472, 480, 492, 508, 520
Offset: 1

Views

Author

Keywords

Comments

Arithmetic derivative (see A003415) of prime(n)*prime(n+1). - Giorgio Balzarotti, May 26 2011
A008472(a(n)) = A191583(n). - Reinhard Zumkeller, Jun 28 2011
With the exception of the first term, all terms are even. a(n) is divisible by 4 if the difference between prime(n) and prime(n + 1) is not divisible by 4; e.g., prime(n) = 1 mod 4 and prime(n + 1) = 3 mod 4. In general, for a(n) to be divisible by some even number m > 2 requires that prime(n + 1) - prime(n) not be a multiple of m. - Alonso del Arte, Jan 30 2012

Examples

			2 + 3 = 5.
3 + 5 = 8.
5 + 7 = 12.
7 + 11 = 18.
		

References

  • Archimedeans Problems Drive, Eureka, 26 (1963), 12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A050936.
Cf. A000040 (primes), A031131 (first differences), A092163 (bisection), A100479 (bisection).

Programs

  • Haskell
    a001043 n = a001043_list !! (n-1)
    a001043_list = zipWith (+) a000040_list $ tail a000040_list
    -- Reinhard Zumkeller, Oct 19 2011
  • Magma
    [(NthPrime(n+1) + NthPrime(n)): n in [1..100]]; // Vincenzo Librandi, Apr 02 2011
    
  • Maple
    Primes:= select(isprime,[2,seq(2*i+1,i=1..1000)]):
    n:= nops(Primes):
    Primes[1..n-1] + Primes[2..n]; # Robert Israel, Aug 29 2014
  • Mathematica
    Table[Prime[n] + Prime[n + 1], {n, 55}] (* Ray Chandler, Feb 12 2005 *)
    Total/@Partition[Prime[Range[60]], 2, 1] (* Harvey P. Dale, Aug 23 2011 *)
    Abs[Differences[Table[(-1)^n Prime[n], {n, 60}]]] (* Alonso del Arte, Feb 03 2016 *)
  • PARI
    p=2;forprime(q=3,1e3,print1(p+q", ");p=q) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    is(n)=precprime((n-1)/2)+nextprime(n/2)==n&&n>2 \\ Charles R Greathouse IV, Jun 21 2012
    
  • Sage
    BB = primes_first_n(56)
    L = []
    for i in range(55): L.append(BB[1 + i] + BB[i])
    L # Zerinvary Lajos, May 14 2007
    

Formula

a(n) = prime(n) + prime(n + 1) = A000040(n) + A000040(n+1).
a(n) = A116366(n, n - 1) for n > 1. - Reinhard Zumkeller, Feb 06 2006
a(n) = 2*A024675(n-1), n>1. - R. J. Mathar, Jan 12 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000

A001747 2 together with primes multiplied by 2.

Original entry on oeis.org

2, 4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502
Offset: 1

Views

Author

Keywords

Comments

When supplemented with 8, may be considered the "even primes", since these are the even numbers n = 2k which are divisible just by 1, 2, k and 2k. - Louis Zuckerman (louis(AT)trapezoid.com), Sep 12 2000
Sequence gives solutions of sigma(n) - phi(n) = n + tau(n) where tau(n) is the number of divisors of n.
Numbers n such that sigma(n) = 3*(n - phi(n)).
Except for 2, orders of non-cyclic groups k (in A060679(n)) such that x^k==1 (mod k) has only 1 solution 2<=x<=k. - Benoit Cloitre, May 10 2002
Numbers n such that A092673(n) = 2. - Jon Perry, Mar 02 2004
Except for initial terms, this sequence = A073582 = A074845 = A077017. Starting with the term 10, they are identical. - Robert G. Wilson v, Jun 15 2004
Together with 8 and 16, even numbers n such that n^2 does not divide (n/2)!. - Arkadiusz Wesolowski, Jul 16 2011
Twice noncomposite numbers. - Omar E. Pol, Jan 30 2012

Crossrefs

Equals {2} UNION {A100484}.

Programs

  • GAP
    Concatenation([2], List([1..60], n-> 2*Primes[n])); # G. C. Greubel, May 18 2019
  • Magma
    [2] cat [2*NthPrime(n): n in [1..60]]; // G. C. Greubel, May 18 2019
    
  • Mathematica
    Join[{2},2*Prime[Range[60]]] (* Harvey P. Dale, Jul 23 2013 *)
  • PARI
    print1(2);forprime(p=2,97,print1(", "2*p)) \\ Charles R Greathouse IV, Jan 31 2012
    
  • Sage
    [2]+[2*nth_prime(n) for n in (1..60)] # G. C. Greubel, May 18 2019
    

Formula

a(n) = A001043(n) - A001223(n+1), except for initial term.
a(n) = A116366(n-2,n-2) for n>2. - Reinhard Zumkeller, Feb 06 2006
A006093(n) = A143201(a(n+1)) for n>1. - Reinhard Zumkeller, Aug 12 2008
a(n) = 2*A008578(n). - Omar E. Pol, Jan 30 2012, and Reinhard Zumkeller, Feb 16 2012

A048448 a(n) = prime(n-1) + prime(n+1) (assuming prime(i) = 0 for i < 1).

Original entry on oeis.org

2, 3, 7, 10, 16, 20, 28, 32, 40, 48, 54, 66, 72, 80, 88, 96, 106, 114, 126, 132, 140, 150, 156, 168, 180, 190, 200, 208, 212, 220, 236, 244, 264, 270, 286, 290, 306, 314, 324, 336, 346, 354, 370, 374, 388, 392, 408, 422, 438, 452, 460, 468, 474, 490, 498, 514
Offset: 0

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

Starting from prime sequence add previous and next term yielding generation 2.
a(n) = A116366(n,n-2) for n>2. - Reinhard Zumkeller, Feb 06 2006
Arithmetic derivative (see A003415) of prime(n-1)*prime(n+1) for n > 1. - Giorgio Balzarotti, May 26 2011

Crossrefs

Generation 1 is the 'prime sequence A000040'. See A048449-A048466. See also A047844.

Programs

  • GAP
    Concatenation([2,3], List([2..60], n-> Primes[n-1] + Primes[n+1])); # G. C. Greubel, May 18 2019
  • Magma
    [2,3] cat [NthPrime(n-1) + NthPrime(n+1): n in [2..60]];  // G. C. Greubel, May 18 2019
    
  • Mathematica
    Table[If[n < 2, Prime[n+1], Prime[n+1] + Prime[n-1]], {n, 0, 60}]
    Join[{2,3},First[#]+Last[#]&/@Partition[Prime[Range[60]],3,1]] (* Harvey P. Dale, Jan 25 2016 *)
  • MuPAD
    ithprime(i)+ithprime(i+2) $ i = 1..54 // Zerinvary Lajos, Feb 26 2007
    
  • PARI
    je=[2,3]; for(n=1,60,je=concat(je, prime(n)+prime(n+2))); je \\ modified by G. C. Greubel, May 18 2019
    
  • Sage
    [2,3] + [nth_prime(n-1) + nth_prime(n+1) for n in (2..60)] # G. C. Greubel, May 18 2019
    

A113935 a(n) = prime(n) + 3.

Original entry on oeis.org

5, 6, 8, 10, 14, 16, 20, 22, 26, 32, 34, 40, 44, 46, 50, 56, 62, 64, 70, 74, 76, 82, 86, 92, 100, 104, 106, 110, 112, 116, 130, 134, 140, 142, 152, 154, 160, 166, 170, 176, 182, 184, 194, 196, 200, 202, 214, 226, 230, 232, 236, 242, 244, 254, 260, 266, 272, 274
Offset: 1

Views

Author

Jorge Coveiro, Jan 30 2006

Keywords

Crossrefs

Programs

Formula

a(n) = A116366(n-1,1) for n>1. - Reinhard Zumkeller, Feb 06 2006
a(n) = 2*A098090(n-1) for n > 1. - Reinhard Zumkeller, Sep 14 2006
a(n) = A000040(n) + 3 = A008864(n) + 2 = A052147(n) + 1 = A175221(n) - 1 = A175222(n) - 2 = A139049(n) - 3 = A175223(n) - 4 = A175224(n) - 5 = A140353(n) - 6 = A175225(n) - 7. - Jaroslav Krizek, Mar 06 2010
Showing 1-7 of 7 results.