cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A068049 The first term greater than one on each row of A068009. a(n) = A068009[n, A002024[n]].

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 4, 3, 3, 2, 2, 2, 5, 4, 3, 3, 2, 2, 2, 6, 5, 4, 3, 3, 2, 2, 2, 7, 6, 5, 4, 3, 3, 2, 2, 2, 9, 7, 6, 5, 4, 3, 3, 2, 2, 2, 11, 9, 7, 6, 5, 4, 3, 3, 2, 2, 2, 13, 11, 9, 7, 6, 5, 4, 3, 3, 2, 2, 2, 16, 13, 11, 9, 7, 6, 5, 4, 3, 3, 2, 2, 2, 19, 16, 13, 11, 9, 7, 6, 5
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Comments

In row 1 of A068009 the first term > 1 is found at position 1, for rows 2 & 3 at position 2, for rows 4,5,6 at position 3, for rows 7,8,9,10 at position 4 etc., thus it is natural to view this also as a triangular table.

Crossrefs

a(n) = A000009(A025581(n-1))+1. Specifically, the left edge is equal to A000009[n]+1 (i.e. apart from the first term = A052839) and the right edge is all-2 sequence A007395.

Programs

  • Maple
    [seq(A000009(A025581(j-1))+1,j=1..99)];
    A025581 := n-> binomial(1+floor(1/2+sqrt(2+2*n)),2)-(n+1);
    N := 100; t1 := series(mul(1+x^k,k=1..N),x,N); A000009 := proc(n) coeff(t1,x,n); end;
  • Mathematica
    a[n_] := PartitionsQ[(1/2)(Floor[Sqrt[2n]+1/2]^2 + Floor[Sqrt[2n]+1/2] - 2n)] + 1; Array[a, 100] (* Jean-François Alcover, Mar 02 2016 *)

A053632 Irregular triangle read by rows giving coefficients in expansion of Product_{k=1..n} (1 + x^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4
Offset: 0

Views

Author

N. J. A. Sloane, Mar 22 2000

Keywords

Comments

Or, triangle T(n,k) read by rows, giving number of subsets of {1,2,...,n} with sum k. - Roger CUCULIERE (cuculier(AT)imaginet.fr), Nov 19 2000
Row n consists of A000124(n) terms. These are also the successive vectors (their nonzero elements) when one starts with the infinite vector (of zeros) with 1 inserted somewhere and then shifts it one step (right or left) and adds to the original, then shifts the result two steps and adds, three steps and adds, etc. - Antti Karttunen, Feb 13 2002
T(n,k) = number of partitions of k into distinct parts <= n. Triangle of distribution of Wilcoxon's signed rank statistic. - Mitch Harris, Mar 23 2006
T(n,k) = number of binary words of length n in which the sum of the positions of the 0's is k. Example: T(4,5)=2 because we have 0110 (sum of the positions of the 0's is 1+4=5) and 1001 (sum of the positions of the 0's is 2+3=5). - Emeric Deutsch, Jul 23 2006
A fair coin is flipped n times. You receive i dollars for a "success" on the i-th flip, 1<=i<=n. T(n,k)/2^n is the probability that you will receive exactly k dollars. Your expectation is n(n+1)/4 dollars. - Geoffrey Critzer, May 16 2010
From Gus Wiseman, Jan 02 2023: (Start)
With offset 1, also the number of integer compositions of n whose partial sums add up to k for k = n..n(n+1)/2. For example, row n = 6 counts the following compositions:
6 15 24 33 42 51 141 231 321 411 1311 2211 3111 12111 21111 111111
114 123 132 222 312 1131 1221 2121 11121 11211
213 1113 1122 1212 2112 1111
(End)

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1, 1, 1;
  1, 1, 1, 2, 1, 1, 1;
  1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1;
  1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1;
  1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1;
  ...
Row n = 4 counts the following binary words, where k = sum of positions of zeros:
  1111  0111  1011  0011  0101  0110  0001  0010  0100  1000  0000
                    1101  1110  1001  1010  1100
Row n = 5 counts the following strict partitions of k with all parts <= n (0 is the empty partition):
  0  1  2  3  4  5  42  43  53  54  532  542  543  5431 5432 54321
           21 31 32 51  52  431 432 541  5321 5421
                 41 321 421 521 531 4321
		

References

  • A. V. Yurkin, New binomial and new view on light theory, (book), 2013, 78 pages, no publisher listed.

Crossrefs

Rows reduced modulo 2 and interpreted as binary numbers: A068052, A068053. Rows converge towards A000009.
Row sums give A000079.
Cf. A285101 (multiplicative encoding of each row), A285103 (number of odd terms on row n), A285105 (number of even terms).
Row lengths are A000124.
A reciprocal version is (A033999, A219977, A291983, A291984, A291985, ...).
A negative version is A231599.
A version for partitions is A358194, reversed partitions A264034.

Programs

  • Maple
    with(gfun,seriestolist); map(op,[seq(seriestolist(series(mul(1+(z^i), i=1..n),z,binomial(n+1,2)+1)), n=0..10)]); # Antti Karttunen, Feb 13 2002
    # second Maple program:
    g:= proc(n) g(n):= `if`(n=0, 1, expand(g(n-1)*(1+x^n))) end:
    T:= n-> seq(coeff(g(n), x, k), k=0..degree(g(n))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 19 2012
  • Mathematica
    Table[CoefficientList[ Series[Product[(1 + t^i), {i, 1, n}], {t, 0, 100}], t], {n, 0, 8}] // Grid (* Geoffrey Critzer, May 16 2010 *)

Formula

From Mitch Harris, Mar 23 2006: (Start)
T(n,k) = T(n-1, k) + T(n-1, k-n), T(0,0)=1, T(0,k) = 0, T(n,k) = 0 if k < 0 or k > (n+1 choose 2).
G.f.: (1+x)*(1+x^2)*...*(1+x^n). (End)
Sum_{k>=0} k * T(n,k) = A001788(n). - Alois P. Heinz, Feb 09 2017
max_{k>=0} T(n,k) = A025591(n). - Alois P. Heinz, Jan 20 2023

A000016 a(n) is the number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the last stage.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 10, 16, 30, 52, 94, 172, 316, 586, 1096, 2048, 3856, 7286, 13798, 26216, 49940, 95326, 182362, 349536, 671092, 1290556, 2485534, 4793492, 9256396, 17895736, 34636834, 67108864, 130150588, 252645136, 490853416
Offset: 0

Views

Author

Keywords

Comments

Also a(n+1) = number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the sum of its contents. E.g., for n=5 there are 6 such sequences.
Also a(n+1) = number of binary vectors (x_1,...x_n) satisfying Sum_{i=1..n} i*x_i = 0 (mod n+1) = size of Varshamov-Tenengolts code VT_0(n). E.g., |VT_0(5)| = 6 = a(6).
Number of binary necklaces with an odd number of zeros. - Joerg Arndt, Oct 26 2015
Also, number of subsets of {1,2,...,n-1} which sum to 0 modulo n (cf. A063776). - Max Alekseyev, Mar 26 2016
From Gus Wiseman, Sep 14 2019: (Start)
Also the number of subsets of {1..n} containing n whose mean is an element. For example, the a(1) = 1 through a(8) = 16 subsets are:
1 2 3 4 5 6 7 8
123 234 135 246 147 258
345 456 357 468
12345 1236 567 678
1456 2347 1348
23456 2567 1568
12467 3458
13457 3678
34567 12458
1234567 14578
23578
24568
45678
123468
135678
2345678
(End)
Number of self-dual binary necklaces with 2n beads (cf. A263768, A007147). - Bernd Mulansky, Apr 25 2023

Examples

			For n=3 the 2 output sequences are 000111000111... and 010101...
For n=5 the 4 output sequences are those with periodic parts {0000011111, 0001011101, 0010011011, 01}.
For n=6 there are 6 such sequences.
		

References

  • B. D. Ginsburg, On a number theory function applicable in coding theory, Problemy Kibernetiki, No. 19 (1967), pp. 249-252.
  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 172.
  • J. Hedetniemi and K. R. Hutson, Equilibrium of shortest path load in ring network, Congressus Numerant., 203 (2010), 75-95. See p. 83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Stoffer, Delay equations with rapidly oscillating stable periodic solutions, J. Dyn. Diff. Eqs. 20 (1) (2008) 201, eq. (39)

Crossrefs

The main diagonal of table A068009, the left edge of triangle A053633.
Subsets whose mean is an element are A065795.
Dominated by A082550.
Partitions containing their mean are A237984.
Subsets containing n but not their mean are A327477.

Programs

  • Haskell
    a000016 0 = 1
    a000016 n = (`div` (2 * n)) $ sum $
       zipWith (*) (map a000010 oddDivs) (map ((2 ^) . (div n)) $ oddDivs)
       where oddDivs = a182469_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    A000016 := proc(n) local d, t; if n = 0 then return 1 else t := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t := t + NumberTheory:-Totient(d)* 2^(n/d)/(2*n) fi od; return t fi end:
  • Mathematica
    a[0] = 1; a[n_] := Sum[Mod[k, 2] EulerPhi[k]*2^(n/k)/(2*n), {k, Divisors[n]}]; Table[a[n], {n, 0, 35}](* Jean-François Alcover, Feb 17 2012, after Pari *)
  • PARI
    a(n)=if(n<1,n >= 0,sumdiv(n,k,(k%2)*eulerphi(k)*2^(n/k))/(2*n));
    
  • Python
    from sympy import totient, divisors
    def A000016(n): return sum(totient(d)<>(~n&n-1).bit_length(),generator=True))//n if n else 1 # Chai Wah Wu, Feb 21 2023

Formula

a(n) = Sum_{odd d divides n} (phi(d)*2^(n/d))/(2*n), n>0.
a(n) = A063776(n)/2.
a(n) = 2^(n-1) - A327477(n). - Gus Wiseman, Sep 14 2019

Extensions

More terms from Michael Somos, Dec 11 1999

A063776 Number of subsets of {1,2,...,n} which sum to 0 modulo n.

Original entry on oeis.org

2, 2, 4, 4, 8, 12, 20, 32, 60, 104, 188, 344, 632, 1172, 2192, 4096, 7712, 14572, 27596, 52432, 99880, 190652, 364724, 699072, 1342184, 2581112, 4971068, 9586984, 18512792, 35791472, 69273668, 134217728, 260301176, 505290272, 981706832
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 16 2001

Keywords

Comments

From Gus Wiseman, Sep 14 2019: (Start)
Also the number of subsets of {1..n} that are empty or contain n and have integer mean. If the subsets are not required to contain n, we get A327475. For example, the a(1) = 2 through a(6) = 12 subsets are:
{} {} {} {} {} {}
{1} {2} {3} {4} {5} {6}
{1,3} {2,4} {1,5} {2,6}
{1,2,3} {2,3,4} {3,5} {4,6}
{1,3,5} {1,2,6}
{3,4,5} {1,5,6}
{1,2,4,5} {2,4,6}
{1,2,3,4,5} {4,5,6}
{1,2,3,6}
{1,4,5,6}
{2,3,5,6}
{2,3,4,5,6}
(End)

Examples

			G.f. = 2*x + 2*x^2 + 4*x^3 + 4*x^4 + 8*x^5 + 12*x^6 + 20*x^7 + 32*x^8 + 60*x^9 + ...
		

Crossrefs

Programs

  • Haskell
    a063776 n = a053636 n `div` n  -- Reinhard Zumkeller, Sep 13 2013
    
  • Mathematica
    Table[a = Select[ Divisors[n], OddQ[ # ] &]; Apply[Plus, 2^(n/a)*EulerPhi[a]]/n, {n, 1, 35}]
    a[ n_] := If[ n < 1, 0, 1/n Sum[ Mod[ d, 2] EulerPhi[ d] 2^(n / d), {d, Divisors[ n]}]]; (* Michael Somos, May 09 2013 *)
    Table[Length[Select[Subsets[Range[n]],#=={}||MemberQ[#,n]&&IntegerQ[Mean[#]]&]],{n,0,10}] (* Gus Wiseman, Sep 14 2019 *)
  • PARI
    {a(n) = if( n<1, 0, 1 / n * sumdiv( n, d, (d % 2) * eulerphi(d) * 2^(n / d)))}; /* Michael Somos, May 09 2013 */
    
  • PARI
    a(n) = sumdiv(n, d, (d%2)* 2^(n/d)*eulerphi(d))/n; \\ Michel Marcus, Feb 10 2016
    
  • Python
    from sympy import totient, divisors
    def A063776(n): return (sum(totient(d)<>(~n&n-1).bit_length(),generator=True))<<1)//n # Chai Wah Wu, Feb 21 2023

Formula

a(n) = (1/n) * Sum_{d divides n and d is odd} 2^(n/d) * phi(d).
a(n) = (1/n) * A053636(n). - Michael Somos, May 09 2013
a(n) = 2 * A000016(n).
For odd n, a(n) = A000031(n).
G.f.: -Sum_{m >= 0} (phi(2*m + 1)/(2*m + 1)) * log(1 - 2*x^(2*m + 1)). - Petros Hadjicostas, Jul 13 2019
a(n) = A082550(n) + 1. - Gus Wiseman, Sep 14 2019

Extensions

More terms from Vladeta Jovovic, Aug 20 2001

A068010 Number of subsets of {1,2,3,...,n} that sum to 0 mod 3.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 24, 44, 88, 176, 344, 688, 1376, 2736, 5472, 10944, 21856, 43712, 87424, 174784, 349568, 699136, 1398144, 2796288, 5592576, 11184896, 22369792, 44739584, 89478656, 178957312, 357914624, 715828224, 1431656448, 2863312896
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Comments

Third row of A068009.

Examples

			a(4)=6 because we have: {}, {3}, {1,2}, {2,4}, {1,2,3}, {2,3,4}. - _Geoffrey Critzer_, Jan 18 2014
		

Programs

  • Maple
    A068010 := n -> (2^n + 2^((n + 1 + (4/sqrt(3))*cos(((4*n)+1)*Pi/6))/3))/3;
  • Mathematica
    Table[nn=(n^2+n)/2;Total[Table[Coefficient[Series[Product[1+x^i,{i,1,n}],{x,0,nn}],x^(3k)],{k,1,nn}]]+1,{n,1,33}] (* Geoffrey Critzer, Jan 18 2014 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -4,2,0,2]^n*[1;1;2;4])[1,1] \\ Charles R Greathouse IV, Mar 27 2017

Formula

a(0)=1, a(1)=1, a(n) = 2*a(n-1) if 3 does not divide n-1 and a(n) = 2*a(n-1)-(2^((n-1)/3)) if 3 divides n-1.
a(n) = (2^n + 2^((n + 1 + (4/sqrt(3))*cos(((4*n)+1)*Pi/6))/3))/3. - Fred Galvin
G.f.: (1-x-2*x^3)/(1-2*x-2*x^3+4*x^4). - Colin Barker, Feb 03 2012
a(0)=1, a(1)=1, a(2)=2, a(n) = 2*a(n-3) + 2^(n - 2), n>=3. - Baris Arslan, Mar 27 2017

A068030 Number of subsets of {1,2,3,...,n} that sum to 0 mod 9.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 15, 30, 60, 116, 230, 458, 912, 1824, 3648, 7286, 14572, 29144, 58264, 116524, 233044, 466048, 932096, 1864192, 3728300, 7456600, 14913200, 29826224, 59652440, 119304872, 238609408, 477218816, 954437632, 1908874584
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

9th row of A068009.

Programs

  • Maple
    G:= Array(0..100, 0..8):
    G[0,0]:= 1; for j from 1 to 8 do G[0,j]:= 0 od:
    for n from 1 to 100 do
      for j from 0 to 8 do
         k:= j - n mod 9;
         G[n,j]:= G[n-1,j] + G[n-1,k];
    od od:
    seq(G[n,0],n=0..100); # Robert Israel, Apr 30 2019

Formula

Empirical G.f.: -(4*x^12-2*x^9-x^7+2*x^6+2*x^5+2*x^4-3*x^3-x^2-x+1) / ((2*x-1)*(2*x^3-1)*(2*x^9-1)). [Colin Barker, Dec 22 2012]
Empirical G.f. verified: see link. - Robert Israel, Apr 30 2019

A068031 Number of subsets of {1,2,3,...,n} that sum to 0 mod 10.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 7, 13, 26, 52, 104, 206, 410, 820, 1640, 3280, 6556, 13108, 26216, 52432, 104864, 209720, 419432, 838864, 1677728, 3355456, 6710896, 13421776, 26843552, 53687104, 107374208, 214748384, 429496736, 858993472, 1717986944, 3435973888, 6871947712
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

10th row of A068009.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, `if`(s=0, 1, 0),
          b(n-1, s)+b(n-1, irem(s+n, 10)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..36);  # Alois P. Heinz, May 02 2025

Formula

Empirical G.f.: (x-1)*(2*x^7+3*x^6+4*x^5+2*x^4+2*x^3+x^2-1) / ((2*x-1)*(2*x^5-1)). - Colin Barker, Dec 22 2012

A068038 Number of subsets of {1,2,3,...,n} that sum to 0 mod 17.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 8, 15, 30, 60, 120, 241, 482, 964, 1928, 3856, 7712, 15422, 30842, 61682, 123362, 246722, 493446, 986896, 1973790, 3947580, 7895160, 15790320, 31580642, 63161284, 126322568, 252645136, 505290272, 1010580544, 2021161084
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

17th row of A068009.

Programs

  • PARI
    {A068038(n)=local(v,v1);v=vector(17);v[1]=1;for(i=1,n,v1=vector(17);for(j=0,16,v1[j+1]=v[j+1]+v[(j-i)%17+1]);v=v1);v[1]} \\ Max Alekseyev, Jul 23 2005

Formula

Empirical G.f.: -(2*x^17-x^12+x^8-2*x^7-x^6+x^5+x^4+x^3+x^2+x-1) / ((2*x-1)*(2*x^17-1)). - Colin Barker, Dec 22 2012

Extensions

Rechecked by Max Alekseyev, Jul 23 2005

A068045 Number of subsets of {1,2,3,...,n} that sum to 0 mod 64.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 21, 105, 316, 705, 1297, 2181, 3837, 7596, 15962, 32998, 66173, 131379, 261910, 524012, 1048568, 2097228, 4194318, 8388600, 16777216, 33554434, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Crossrefs

64th row of A068009.

Formula

G.f.: (4*x^32 -2*x^31 -16*x^30+36*x^29 +138*x^28 -92*x^27 -544*x^26 -192*x^25 +848*x^24 +967*x^23 -177*x^22 -1074*x^21 -770*x^20 +78*x^19 +525*x^18 +413*x^17 +113*x^16 -73*x^15 -106*x^14 -63*x^13 -17*x^12 +x^10 +x^9 +x^8 +x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x-1) / (2*x-1). - Alois P. Heinz, Jan 18 2014

A068011 Number of subsets of {1,2,3,...,n} that sum to 0 mod 5.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 14, 26, 52, 104, 208, 412, 820, 1640, 3280, 6560, 13112, 26216, 52432, 104864, 209728, 419440, 838864, 1677728, 3355456, 6710912, 13421792, 26843552, 53687104, 107374208, 214748416, 429496768, 858993472, 1717986944, 3435973888, 6871947776
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Comments

For n>2, a(n) = 2 * A068031(n).

Crossrefs

5th row of A068009.

Programs

  • Maple
    A068011_rec := proc(n); if(0 = n) then RETURN(1); fi; if(1 = (n mod 5)) then RETURN(2*A068011_rec(n-1)-2^((n-1)/5)); fi; if(2 = (n mod 5)) then RETURN(2*A068011_rec(n-1)-2^((n-2)/5)); fi; RETURN(2*A068011_rec(n-1)); end;
    # second Maple program:
    b:= proc(n, s) option remember; `if`(n=0, `if`(s=0, 1, 0),
          b(n-1, s)+b(n-1, irem(s+n, 5)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, May 02 2025
  • Mathematica
    LinearRecurrence[{2, 0, 0, 0, 2, -4}, {1, 1, 1, 2, 4, 8}, 40] (* Jean-François Alcover, Mar 06 2016 *)

Formula

a(k+1) = 2*a(k) if k == 2, 3, or 4 mod 5, 2*a(k)-2^(k/5) if k == 0 mod 5, 2*a(k)-2^((k-1)/5) if k == 1 mod 5.
G.f.: -(x^2-x+1)*(2*x^3+2*x^2-1) / ((2*x-1)*(2*x^5-1)). - Colin Barker, Dec 22 2012
If n == 0 mod 5, then a(n) = (2^n + 4*2^(n/5))/5. - Giorgos Kalogeropoulos, May 02 2025
a(n) ~ 2^n/5. - Stefano Spezia, May 02 2025
Showing 1-10 of 24 results. Next