cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001358 Semiprimes (or biprimes): products of two primes.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p*q where p and q are primes, not necessarily distinct.
These numbers are sometimes called semiprimes or 2-almost primes.
Numbers n such that Omega(n) = 2 where Omega(n) = A001222(n) is the sum of the exponents in the prime decomposition of n.
Complement of A100959; A064911(a(n)) = 1. - Reinhard Zumkeller, Nov 22 2004
The graph of this sequence appears to be a straight line with slope 4. However, the asymptotic formula shows that the linearity is an illusion and in fact a(n)/n ~ log(n)/log(log(n)) goes to infinity. See also the graph of A066265 = number of semiprimes < 10^n.
For numbers between 33 and 15495, semiprimes are more plentiful than any other k-almost prime. See A125149.
Numbers that are divisible by exactly 2 prime powers (not including 1). - Jason Kimberley, Oct 02 2011
The (disjoint) union of A006881 and A001248. - Jason Kimberley, Nov 11 2015
An equivalent definition of this sequence is a'(n) = smallest composite number which is not divided by any smaller composite number a'(1),...,a'(n-1). - Meir-Simchah Panzer, Jun 22 2016
The above characterization can be simplified to "Composite numbers not divisible by a smaller term." This shows that this is the equivalent of primes computed via Eratosthenes's sieve, but starting with the set of composite numbers (i.e., complement of 1 union primes) instead of all positive integers > 1. It's easy to see that iterating the method (using Eratosthenes's sieve each time on the remaining numbers, complement of the previously computed set) yields numbers with bigomega = k for k = 0, 1, 2, 3, ..., i.e., {1}, A000040, this, A014612, etc. - M. F. Hasler, Apr 24 2019
For all n except n = 2, a(n) is a deficient number. - Amrit Awasthi, Sep 10 2024
It is reasonable to assume that the "comforting numbers" which John T. Williams found in Chapter 3 of Milne's book "The House at Pooh Corner" are these semiprimes. Winnie-the-Pooh wonders whether he has 14 or 15 honey pots and concludes: "It's sort of comforting." To arrange a semiprime number of honey pots in a rectangular way, let's say on a shelf, with the larger divisor parallel to the wall, there is only one solution and this is for a simple mind like Winnie-the-Pooh comforting. - Ruediger Jehn, Dec 12 2024

Examples

			From _Gus Wiseman_, May 27 2021: (Start)
The sequence of terms together with their prime factors begins:
   4 = 2*2     46 = 2*23     91 = 7*13    141 = 3*47
   6 = 2*3     49 = 7*7      93 = 3*31    142 = 2*71
   9 = 3*3     51 = 3*17     94 = 2*47    143 = 11*13
  10 = 2*5     55 = 5*11     95 = 5*19    145 = 5*29
  14 = 2*7     57 = 3*19    106 = 2*53    146 = 2*73
  15 = 3*5     58 = 2*29    111 = 3*37    155 = 5*31
  21 = 3*7     62 = 2*31    115 = 5*23    158 = 2*79
  22 = 2*11    65 = 5*13    118 = 2*59    159 = 3*53
  25 = 5*5     69 = 3*23    119 = 7*17    161 = 7*23
  26 = 2*13    74 = 2*37    121 = 11*11   166 = 2*83
  33 = 3*11    77 = 7*11    122 = 2*61    169 = 13*13
  34 = 2*17    82 = 2*41    123 = 3*41    177 = 3*59
  35 = 5*7     85 = 5*17    129 = 3*43    178 = 2*89
  38 = 2*19    86 = 2*43    133 = 7*19    183 = 3*61
  39 = 3*13    87 = 3*29    134 = 2*67    185 = 5*37
(End)
		

References

  • Archimedeans Problems Drive, Eureka, 17 (1954), 8.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 60.
  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition: Chelsea, New York (1974). See p. 211.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • John T. Williams, Pooh and the Philosophers, Dutton Books, 1995.

Crossrefs

Cf. A064911 (characteristic function).
Cf. A048623, A048639, A000040 (primes), A014612 (products of 3 primes), A014613, A014614, A072000 ("pi" for semiprimes), A065516 (first differences).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r=1), this sequence (r=2), A014612 (r=3), A014613 (r=4), A014614 (r=5), A046306 (r=6), A046308 (r=7), A046310 (r=8), A046312 (r=9), A046314 (r=10), A069272 (r=11), A069273 (r=12), A069274 (r=13), A069275 (r=14), A069276 (r=15), A069277 (r=16), A069278 (r=17), A069279 (r=18), A069280 (r=19), A069281 (r=20).
These are the Heinz numbers of length-2 partitions, counted by A004526.
The squarefree case is A006881 with odd/even terms A046388/A100484 (except 4).
Including primes gives A037143.
The odd/even terms are A046315/A100484.
Partial sums are A062198.
The prime factors are A084126/A084127.
Grouping by greater factor gives A087112.
The product/sum/difference of prime indices is A087794/A176504/A176506.
Positions of even/odd terms are A115392/A289182.
The terms with relatively prime/divisible prime indices are A300912/A318990.
Factorizations using these terms are counted by A320655.
The prime indices are A338898/A338912/A338913.
Grouping by weight (sum of prime indices) gives A338904, with row sums A024697.
The terms with even/odd weight are A338906/A338907.
The terms with odd/even prime indices are A338910/A338911.
The least/greatest term of weight n is A339114/A339115.

Programs

  • Haskell
    a001358 n = a001358_list !! (n-1)
    a001358_list = filter ((== 2) . a001222) [1..]
    
  • Magma
    [n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc:
    seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
  • Mathematica
    Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *)
    Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
  • PARI
    select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, sqrt(lim), t=p;forprime(q=p, lim\t, listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
    
  • PARI
    A1358=List(4); A001358(n)={while(#A1358M. F. Hasler, Apr 24 2019
    
  • Python
    from sympy import factorint
    def ok(n): return sum(factorint(n).values()) == 2
    print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
    
  • Python
    from math import isqrt
    from sympy import primepi, prime
    def A001358(n):
        def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 23 2024

Formula

a(n) ~ n*log(n)/log(log(n)) as n -> infinity [Landau, p. 211], [Ayoub].
Recurrence: a(1) = 4; for n > 1, a(n) = smallest composite number which is not a multiple of any of the previous terms. - Amarnath Murthy, Nov 10 2002
A174956(a(n)) = n. - Reinhard Zumkeller, Apr 03 2010
a(n) = A088707(n) - 1. - Reinhard Zumkeller, Feb 20 2012
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 + P(2*s)), where P is the prime zeta function. - Enrique Pérez Herrero, Jun 24 2012
sigma(a(n)) + phi(a(n)) - mu(a(n)) = 2*a(n) + 1. mu(a(n)) = ceiling(sqrt(a(n))) - floor(sqrt(a(n))). - Wesley Ivan Hurt, May 21 2013
mu(a(n)) = -Omega(a(n)) + omega(a(n)) + 1, where mu is the Moebius function (A008683), Omega is the count of prime factors with repetition, and omega is the count of distinct prime factors. - Alonso del Arte, May 09 2014
a(n) = A078840(2,n). - R. J. Mathar, Jan 30 2019
A100484 UNION A046315. - R. J. Mathar, Apr 19 2023
Conjecture: a(n)/n ~ (log(n)/log(log(n)))*(1-(M/log(log(n)))) as n -> oo, where M is the Mertens's constant (A077761). - Alain Rocchelli, Feb 02 2025

Extensions

More terms from James Sellers, Aug 22 2000

A084127 Prime factor >= other prime factor of n-th semiprime.

Original entry on oeis.org

2, 3, 3, 5, 7, 5, 7, 11, 5, 13, 11, 17, 7, 19, 13, 23, 7, 17, 11, 19, 29, 31, 13, 23, 37, 11, 41, 17, 43, 29, 13, 31, 47, 19, 53, 37, 23, 59, 17, 11, 61, 41, 43, 19, 67, 47, 71, 13, 29, 73, 31, 79, 53, 23, 83, 13, 59, 89, 61, 37, 17, 97, 67, 101, 29, 41, 103, 19, 71, 107, 43, 31
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2003

Keywords

Comments

Largest nontrivial divisor of n-th semiprime. [Juri-Stepan Gerasimov, Apr 18 2010]
Greater of the prime factors of A001358(n). - Jianing Song, Aug 05 2022

Crossrefs

Cf. A001358 (the semiprimes), A084126 (lesser of the prime factors of the semiprimes).

Programs

  • Haskell
    a084127 = a006530 . a001358  -- Reinhard Zumkeller, Nov 25 2012
    
  • Mathematica
    FactorInteger[#][[-1, 1]]& /@ Select[Range[1000], PrimeOmega[#] == 2&] (* Jean-François Alcover, Nov 17 2021 *)
  • PARI
    lista(nn) = {for (n=2, nn, if (bigomega(n)==2, f = factor(n); print1(f[length(f~),1], ", ")););} \\ Michel Marcus, Jun 05 2013
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, primefactors
    def A084127(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1)))
        return max(primefactors(bisection(f,n,n))) # Chai Wah Wu, Oct 23 2024

Formula

a(n) = A006530(A001358(n)).
a(n) = A001358(n)/A020639(A001358(n)). [corrected by Michel Marcus, Jul 18 2020]
a(n) = A001358(n)/A084126(n).

Extensions

Corrected by T. D. Noe, Nov 15 2006

A084126 Prime factor <= other prime factor of n-th semiprime.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 3, 2, 5, 2, 3, 2, 5, 2, 3, 2, 7, 3, 5, 3, 2, 2, 5, 3, 2, 7, 2, 5, 2, 3, 7, 3, 2, 5, 2, 3, 5, 2, 7, 11, 2, 3, 3, 7, 2, 3, 2, 11, 5, 2, 5, 2, 3, 7, 2, 13, 3, 2, 3, 5, 11, 2, 3, 2, 7, 5, 2, 11, 3, 2, 5, 7, 2, 3, 13, 2, 5, 3, 13, 3, 11, 2, 7, 2, 5, 3, 2, 2, 7, 17, 3, 5, 2, 13, 7, 2, 3, 5, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2003

Keywords

Comments

Lesser of the prime factors of A001358(n). - Jianing Song, Aug 05 2022

Crossrefs

Cf. A001358 (the semiprimes), A084127 (greater of the prime factors of the semiprimes).

Programs

  • Haskell
    a084126 = a020639 . a001358  -- Reinhard Zumkeller, Nov 25 2012
    
  • Mathematica
    FactorInteger[#][[1,1]]&/@Select[Range[500],PrimeOmega[#]==2&] (* Harvey P. Dale, Jun 25 2018 *)
  • Python
    from sympy import primepi, primerange, primefactors
    def A084126(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1)))
        return min(primefactors(bisection(f,n,n))) # Chai Wah Wu, Apr 03 2025

Formula

a(n) = A020639(A001358(n)).
a(n) = A001358(n)/A006530(A001358(n)). [corrected by Michel Marcus, Jul 18 2020]
a(n) = A001358(n)/A084127(n).

A109313 Difference between prime factors of n-th semiprime.

Original entry on oeis.org

0, 1, 0, 3, 5, 2, 4, 9, 0, 11, 8, 15, 2, 17, 10, 21, 0, 14, 6, 16, 27, 29, 8, 20, 35, 4, 39, 12, 41, 26, 6, 28, 45, 14, 51, 34, 18, 57, 10, 0, 59, 38, 40, 12, 65, 44, 69, 2, 24, 71, 26, 77, 50, 16, 81, 0, 56, 87, 58, 32, 6, 95, 64, 99, 22, 36, 101, 8, 68, 105, 38, 24, 107, 70, 4
Offset: 1

Views

Author

Zak Seidov, Jun 27 2005

Keywords

Comments

a(n)=0 iff sp(n) is a square of prime, sp(n) = n-th semiprime = A001358(n).

Examples

			a(1)=0 because sp(1)=4=2*2 and 2-2=0; a(2)=1 because sp(2)=6=2*3 and 3-2=1; sp(n)=n-th semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if bigomega(n)=2 and nops(factorset(n))=2 then factorset(n)[2]-factorset(n)[1] elif bigomega(n)=2 then 0 else fi end: seq(a(n),n=1..225); # Emeric Deutsch
    # second Maple program:
    b:= proc(n) option remember; local k;
          if n=1 then 4
        else for k from 1+b(n-1) do if not isprime(k) and
                numtheory[bigomega](k)=2 then return k fi
             od
          fi
        end:
    a:= n-> (s-> max(s)-min(s))(numtheory[factorset](b(n))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 05 2017
  • Mathematica
    spQ[n_] := PrimeOmega[n] == 2; fi[n_] := FactorInteger[n];
    f[n_] := fi[n][[-1, 1]] - fi[n][[1, 1]];
    f[#] & /@ Select[Range@215, spQ] (* Zak Seidov, Oct 16 2014 *)
  • Python
    from math import isqrt
    from sympy.ntheory.primetest import is_square
    from sympy import primepi, primerange, primefactors
    def A109313(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1)))
        return 0 if is_square(m:=bisection(f,n,n)) else (p:=primefactors(m))[1]-p[0] # Chai Wah Wu, Apr 03 2025

Extensions

Edited by Zak Seidov, Oct 16 2014

A115585 Semiprimes with a semiprime sum of factors.

Original entry on oeis.org

4, 9, 14, 21, 25, 26, 33, 38, 46, 49, 57, 62, 69, 74, 85, 93, 94, 106, 121, 129, 133, 134, 145, 166, 169, 177, 178, 205, 213, 217, 218, 226, 237, 249, 253, 254, 262, 265, 278, 289, 309, 314, 334, 361, 362, 393, 398, 417, 422, 445, 466, 469, 489, 493, 502, 505
Offset: 1

Views

Author

Zak Seidov, Mar 09 2006

Keywords

Examples

			314 = 2*157 and 2 + 157 = 159 =3 * 53 (semiprime).
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; Select[ Range@513, fQ@# && fQ[ Plus @@ Flatten[ Table[First@#, {Last@#}] & /@ FactorInteger@# ]] &] (* Robert G. Wilson v *)
    Select[Range[600],PrimeOmega[#]==PrimeOmega[Total[Flatten[Table[#[[1]],{#[[2]]}]&/@FactorInteger[#]]]]==2&] (* Harvey P. Dale, Jan 22 2013 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2, sqrt(lim), forprime(q=p, lim\p, if(bigomega(p+q)==2, listput(v, p*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 09 2012

Extensions

More terms from Robert G. Wilson v, Apr 12 2006

A120833 Numerators of partial sums of (p+q)/p*q, where p and q are primes.

Original entry on oeis.org

1, 11, 37, 359, 4211, 21569, 26861, 404633, 486533, 543317, 620537, 12904043, 14719493, 15845813, 34726021, 185083001, 206868401, 222740621, 61034249, 715725589, 23180285059, 24177226459, 8697796903, 9167200453, 9502812653
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 24 2006

Keywords

Comments

Denominators: A120834(n);
a(n)/A120834(n) = Sum(A001358(n)/A068318(n):1<=k<=n).

Examples

			n=5: 2*2/(2+2)+2*3/(2+3)+3*3/(3+3)+2*5/(2+5)+2*7/(2+7) =
4/4 + 6/5 + 9/6 + 10/7 + 14/9 = 4211/630 = a(5)/A120834(5).
		

Crossrefs

A120831 Numerators of partial sums of (p+q)/p*q, where p and q are primes.

Original entry on oeis.org

1, 11, 5, 16, 269, 919, 1019, 6287, 6749, 192799, 68513, 629908, 131816, 5366365, 16894967, 206416733, 212790815, 221539555, 1140147647, 394400219, 24027859197, 390223473936, 399480111942, 1236227094836, 95391734575399
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 24 2006

Keywords

Comments

Denominators: A120832(n);
a(n)/A120832(n) = Sum(A068318(n)/A001358(n):1<=k<=n).

Examples

			n=5: (2+2)/2*2+(2+3)/2*3+(3+3)/3*3+(2+5)/2*5+(2+7)/2*7 =
4/4 + 5/6 + 6/9 + 7/10 + 9/14 = 269/70 = a(5)/A120832(5).
		

Crossrefs

A120832 Denominators of partial sums of (p+q)/p*q, where p and q are primes.

Original entry on oeis.org

1, 6, 2, 5, 70, 210, 210, 1155, 1155, 30030, 10010, 85085, 17017, 646646, 1939938, 22309287, 22309287, 22309287, 111546435, 37182145, 2156564410, 33426748355, 33426748355, 100280245065, 7420738134810, 7420738134810
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 24 2006

Keywords

Comments

Numerators: A120831(n);
A120831(n)/a(n) = Sum(A068318(n)/A001358(n):1<=k<=n).

Examples

			n=5: (2+2)/2*2+(2+3)/2*3+(3+3)/3*3+(2+5)/2*5+(2+7)/2*7 =
4/4 + 5/6 + 6/9 + 7/10 + 9/14 = 269/70 = A120831(5)/a(5).
		

Crossrefs

A120834 Denominators of partial sums of (p+q)/p*q, where p and q are primes.

Original entry on oeis.org

1, 5, 10, 70, 630, 2520, 2520, 32760, 32760, 32760, 32760, 622440, 622440, 622440, 1244880, 6224400, 6224400, 6224400, 1556100, 17117100, 530630100, 530630100, 176876700, 176876700, 176876700
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 24 2006

Keywords

Comments

Numerators: A120833(n);
A120833(n)/a(n) = Sum(A001358(n)/A068318(n):1<=k<=n).

Examples

			n=5: 2*2/(2+2)+2*3/(2+3)+3*3/(3+3)+2*5/(2+5)+2*7/(2+7) =
4/4 + 6/5 + 9/6 + 10/7 + 14/9 = 4211/630 = A120833(5)/a(5).
		

Crossrefs

A090967 Given the sequence of the sums of the divisors of the semiprimes, this is the subsequence where each sum is an even number.

Original entry on oeis.org

4, 6, 8, 10, 10, 14, 12, 16, 14, 20, 16, 22, 18, 26, 18, 22, 32, 20, 34, 24, 40, 28, 24, 22, 44, 46, 26, 50, 24, 34, 36, 56, 30, 26, 62, 64, 42, 28, 70, 36, 46, 30, 74, 48, 38, 76, 30, 52, 82, 32, 86, 34, 44, 58, 92, 48, 34, 100, 64, 36, 50, 104, 66, 106
Offset: 1

Views

Author

Ryan Witko (witko(AT)nyu.edu), Feb 27 2004

Keywords

Comments

This is the sequence of the sums of the divisors of the n-th semiprime, with all the odd entries removed. Goldbach's Conjecture states that this sequence will include all even integers greater than or equal to 4. This sequence is in some ways the order in which Goldbach's Conjecture is satisfied.

Examples

			a(7)=12 since the seventh semiprime whose two factors sum to an even number is 35, since 35=5*7 and 5+7=12.
		

Crossrefs

Programs

  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; PrimeFactorsAdded[n_] := Plus @@ Flatten[Table[ #[[1]]*#[[2]], {1}] & /@ FactorInteger[n]]; SumOfFactorsOfSemiprimes[n_] := Table[PrimeFactorsAdded[Part[Select[Range[n*n], PrimeFactorExponentsAdded[ # ] == 2 &], a]], {a, 1, n}]; GenerateA090967[n_] := Select[SumOfFactorsOfSemiprimes[n], Mod[ #, 2] == 0 &]; GenerateA090967[100]
Showing 1-10 of 13 results. Next