cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A037293 a(n) = Sum_{i=0..2^(n-1)} binomial(2^(n-1), i)^2.

Original entry on oeis.org

1, 2, 6, 70, 12870, 601080390, 1832624140942590534, 23951146041928082866135587776380551750, 5768658823449206338089748357862286887740211701975162032608436567264518750790
Offset: 0

Views

Author

John Tromp, Dec 11 1999

Keywords

Comments

For n >= 1, a(n) is the number of n-variable balanced Boolean functions. A Boolean function is balanced if it takes the values 0 and 1 an equal number of times. - Aniruddha Biswas, Nov 05 2024

Crossrefs

Programs

  • Maple
    a:= n-> (t-> binomial(t, iquo(t, 2)))(2^n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Jan 14 2017
    #
    a:=n->sum(binomial(2^(n-1),i)^2,i=0..2^(n-1)); seq(a(n),n=0..8);
    a:=n->piecewise(n=0,1,binomial(2^n,2^(n-1))); seq(a(n),n=0..8); # Martin Renner, Jan 16 2017
  • Mathematica
    Flatten[{1,Table[Binomial[2^n, 2^(n-1)], {n, 1, 8}]}] (* Vaclav Kotesovec, Nov 13 2014 *)
  • PARI
    a(n) = sum(i=0, 2^(n-1), binomial(2^(n-1), i)^2)  \\ Michel Marcus, Jun 09 2013
    
  • Python
    from math import comb
    def A037293(n): return comb(1<Chai Wah Wu, Dec 11 2024

Formula

a(n) = A001405(2^n). - Labos Elemer, Apr 11 2001
a(n) ~ 2^(2^n - n/2 + 1/2)/ sqrt(Pi). - Vaclav Kotesovec, Nov 13 2014
a(n) = A000984(2^(n-1)) = binomial(2^n,2^(n-1)) = (2^n)!/((2^(n-1))!)^2 for n > 0. - Martin Renner, Jan 16 2017
a(n) = (2^(2^n)*(2^n + 2)*(1/2*(2^n + 1))!)/(sqrt(Pi)*(2^n + 1)*(1/2*(2^n + 2))!) = (2^(2^n)*(2^n + 2)*Gamma((2^n+3)/2))/(sqrt(Pi)*(2^n + 1)*Gamma(2^(n-1)+2)) for n > 0. - Alexander R. Povolotsky, Nov 19 2022
a(n) = 2 * A069954(n-1) for n > 0. - Tilman Piesk, Oct 11 2024

Extensions

More terms from Erich Friedman

A067667 a(n) = (2^n)!/2^(2^n-1).

Original entry on oeis.org

1, 1, 3, 315, 638512875, 122529844256906551386796875, 13757108753595648665519665029568345104465749222289382342659100341796875
Offset: 0

Views

Author

Benoit Cloitre, Feb 04 2002

Keywords

Comments

a(n) is also the number of knockout tournament seedings with 2^n teams. - Alexander Karpov, Aug 09 2015
From Zhujun Zhang, Jun 17 2019: (Start)
a(n) is also the number of heap-ordered binomial trees of order n (i.e., binomial heaps with 2^n nodes), see the Mark R. Brown reference.
a(n) is also the largest odd divisor of (2^n)!. (End)

Crossrefs

Programs

Formula

From Alexander Karpov, Aug 09 2015: (Start)
a(n) = (2^n)!/2^(2^n-1).
a(n) = (2^n-1)!!*a(n-1).
a(n) = binomial(2^n-1, 2^(n-1)-1)*(a(n-1))^2 = A069954(n-1) * (a(n-1))^2.
(End)
a(n) = A049606(2^n). - Zhujun Zhang, Jun 16 2019
a(n) = Product_{odd k < 2^n} k^(n - floor(log_2(k))). - Harry Richman, May 18 2023

Extensions

a(0) prepended by Jianing Song, Jul 15 2021

A158817 a(n) = (binomial(2^n, 2^(n-1)) - binomial(2^(n-1), 2^(n-2)))/2^n.

Original entry on oeis.org

1, 8, 800, 18783360, 28634752192836096, 187118328452563147377366903401859072, 22533823529098462258163079522899558155141642796614195116180863201125539840
Offset: 2

Views

Author

Tanya Khovanova and Leonid Makar-Limanov, Mar 27 2009

Keywords

Crossrefs

Cf. A069954.

Programs

  • Mathematica
    Table[(Binomial[2^n, 2^(n-1)] -Binomial[2^(n-1), 2^(n-2)])/2^n, {n, 2, 12}]
  • Sage
    [( binomial(2^n, 2^(n-1)) - binomial(2^(n-1), 2^(n-2)) )/2^n for n in (2..12)] # G. C. Greubel, Dec 22 2021

Formula

a(n) = ( binomial(2^n, 2^(n-1)) - binomial(2^(n-1), 2^(n-2)) )/2^n.
Showing 1-3 of 3 results.