cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A058635 a(n) = Fibonacci(2^n).

Original entry on oeis.org

1, 1, 3, 21, 987, 2178309, 10610209857723, 251728825683549488150424261, 141693817714056513234709965875411919657707794958199867
Offset: 0

Views

Author

Robert G. Wilson v, Jan 16 2001

Keywords

Comments

The next term has 107 digits.
From Peter Bala, Oct 30 2013: (Start)
Apart from giving the numerators in the Engel series representation of (1/2)*(7 - sqrt(5)), as noted below by Cloitre, this sequence (excluding the initial term) is also a generalized Pierce expansion defined as follows. Let x and b be positive real numbers. We define a Pierce expansion of x to the base b to be a nondecreasing sequence [a(1), a(2), a(3), ...] of positive integers such that we have an alternating series representation x = b/a(1) - b^2/(a(1)*a(2)) + b^3/(a(1)*a(2)*a(3)) - ....
The present sequence, apart from the initial term, is a Pierce expansion of the real number x := (1/2)*(3 - sqrt(5)) to the base b := 1/sqrt(5). The associated series representation begins (1/2)*(3 - sqrt(5)) = b/1 - b^2/(1*3) + b^3/(1*3*21) - b^4/(1*3*21*987) + .... Cf. A071579 and A230338.
More generally, for n >= 0, the sequence [a(n+1), a(n+2), a(n+3), ...] gives a Pierce expansion of ( (1/2)*(3 - sqrt(5)) )^(2^n) to the base b = 1/sqrt(5). Some examples are given below. (End)
a(n) is the denominator of the n-th iterate when Newton's method is applied to the function x^2 - x - 1 with initial guess x = 1. The n-th iterate is A192222(n)/a(n). - Jason Zimba, Jan 20 2023

Examples

			Let b = 1/sqrt(5) and x = (1/2)*(3 - sqrt(5)). We have the following Pierce expansions to base b:
x = b/1 - b^2/(1*3) + b^3/(1*3*21) - b^4/(1*3*21*987) + ....
x^2 = b/3 - b^2/(3*21) + b^3/(3*21*987) - b^4/(3*21*987*2178309) + ....
x^4 = b/21 - b^2/(21*987) + b^3/(21*987*2178309) - ....
x^8 = b/987 - b^2/(987*2178309) + .... - _Peter Bala_, Oct 30 2013
		

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002, p. 446.

Crossrefs

Programs

  • Magma
    [Fibonacci(2^n): n in [0..10]]; // Vincenzo Librandi, Mar 25 2014
    
  • Maple
    a:= n-> (<<0|1>, <1|1>>^(2^n))[1,2]:
    seq(a(n), n=0..10);  # Alois P. Heinz, Nov 21 2014
  • Mathematica
    Table[ Fibonacci[ 2^n ], {n, 0, 9} ]
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(2^n) - (1 - G)^(2^n))/Sqrt[5]], {n, 1, 7}] (* Artur Jasinski, Oct 05 2008 *)
    Table[Round[(4/5)^(1/2)*Cosh[2^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 10}] (* Artur Jasinski, Oct 05 2008 *)
  • PARI
    a(n)=fibonacci(2^n) \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(n) = a(n-1)*A001566(n-2). - Joe Keane (jgk(AT)jgk.org), May 31 2002
Sum_{n>=0} 1/a(n) = (1/2)*(7-sqrt(5)). - Benoit Cloitre, Jan 26 2003
1/phi^2 = (0.6180339...)^2 = 2/(3+sqrt(5)) = Sum_{n>=2} 1/a(n) = 1/3 + 1/21 + 1/987 + 1/2178309 + ... - Gary W. Adamson, Jun 12 2003
From Artur Jasinski, Oct 05 2008: (Start)
a(n) = (G^(2^n) - (1 - G)^(2^n))/sqrt(5) where G = GoldenRatio = (1 + sqrt(5))/2.
a(n) = sqrt(4/5)*cosh((2^n)*arccosh(sqrt(5/4))). (End)
a(n) = (a(n-1)^3 / a(n-2)^2 + 5 * a(n-1) * a(n-2)^2) / 2, for n > 1. - Lee A. Newberg, Jul 20 2010
Recurrence equations from Peter Bala, Oct 30 2013: (Start)
a(n)/a(n-1) = (a(n-1)/a(n-2))^2 - 2 for n >= 3.
a(n)/a(n-1) = 5*a(n-2)^2 + 2 for n >= 3.
a(n) = a(n-1)*sqrt(5*a(n-1)^2 + 4) for n >= 2. (End)
0 = a(n)^2 * ( a(n+3) - 2*a(n+2) ) - a(n+1)*a(n+2) * ( a(n+2) - 2*a(n+1)) if n > 0. - Michael Somos, Mar 24 2014
From Amiram Eldar, Dec 02 2021: (Start)
a(n) = A000045(A000079(n)).
Limit_{n->oo} sqrt(a(1)^2 + sqrt(a(2)^2 + sqrt(a(3)^2 + ... + sqrt(a(n))))) = 3 (Ohtsuka, 2015). (End)
a(n) = Product_{k=0..n-1} L(2^k), for n >= 1, where L(k) is the k-th Lucas number (A000032). - Amiram Eldar, Mar 30 2023

A002812 a(n) = 2*a(n-1)^2 - 1, starting a(0) = 2.

Original entry on oeis.org

2, 7, 97, 18817, 708158977, 1002978273411373057, 2011930833870518011412817828051050497, 8095731360557835890888779535060256832479295062749579257164654370487894017
Offset: 0

Views

Author

Keywords

Comments

An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
2^p-1 is prime iff it divides a(p-2), since a(n) = A003010(n)/2, where A003010 is the Lucas-Lehmer sequence used for Mersenne number primality testing. - M. F. Hasler, Mar 09 2007
From Cino Hilliard, Sep 28 2008: (Start)
Also numerators of the convergents to the square root of 3 using the following recursion for initial x = 1: x1=x, x=3/x, x=(x+x1)/2.
This recursion was derived by experimenting with polynomial recursions of the form x = -a(0)/(a(n-1)x^(n-1) + ... + a(1)) in an effort to find a root for the polynomial a(n)x^n + a(n-1)x^(n-1) + ... + a(0). The process was hit-and-miss until I introduced the averaging step described above. This method is equivalent to Newton's Method although derived somewhat differently. (End)
The sequence satisfies the Pell equation a(n)^2 - 3*A071579(n)^2 = 1. - Vincenzo Librandi, Dec 19 2011
From Peter Bala, Nov 2012: (Start)
The present sequence corresponds to the case x = 2 of the following general remarks. Let x > 1 and let alpha := {x + sqrt(x^2 - 1)}. Define a sequence a(n) (which depends on x) by setting a(n) = (1/2)*(alpha^(2^n) + (1/alpha)^(2^n)) for n >= 0. It is easy to verify that a(n) is a solution to the recurrence equation a(n+1) = 2*a(n)^2 - 1 with the initial condition a(0) = x.
The following algebraic identity is valid for x > 1:
sqrt(4*x^2 - 4)/(2*x + 1) = (1 - 1/(2*x))*sqrt(4*y^2 - 4)/(2*y + 1), where y = 2*x^2 - 1. Iterating the identity yields the product expansion sqrt(4*x^2 - 4)/(2*x + 1) = Product_{n >= 0} (1 - 1/(2*a(n))). A second expansion is Product_{n >= 0} (1 + 1/a(n)) = sqrt((x + 1)/(x - 1)). See Mendes-France and van der Poorten. (End)

Examples

			G.f. = 2 + 7*x + 97*x^2 + 18817*x^3 + 708158977*x^4 + ...
		

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 399.
  • E. Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
  • W. Sierpiński, Sur les développements systématiques des nombres en produits infinis, in Œuvres choisies, tome 1, PWN Editions scientifiques de Pologne, 1974.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[2];; for n in [2..10] do a[n]:=2*a[n-1]^2-1; od; a; # Muniru A Asiru, Aug 12 2018
  • Magma
    I:=[2]; [n le 1 select I[n] else 2*Self(n-1)^2-1: n in [1..8]]; // Vincenzo Librandi, Dec 19 2011
    
  • Maple
    a:=n->((2+sqrt(3))^(2^n)+(2-sqrt(3))^(2^n))/2: seq(floor(a(n)),n=0..10); # Muniru A Asiru, Aug 12 2018
  • Mathematica
    Table[((2 + Sqrt[3])^2^n + (2 - Sqrt[3])^2^n)/2, {n, 0, 7}] (* Bruno Berselli, Dec 20 2011 *)
    NestList[2#^2-1&,2,10] (* Harvey P. Dale, May 04 2013 *)
    a[ n_] := If[ n < 0, 0, ChebyshevT[2^n, 2]]; (* Michael Somos, Dec 06 2016 *)
  • PARI
    {a(n) = if( n<1, 2 * (n==0), 2 * a(n-1)^2 - 1)}; /* Michael Somos, Mar 14 2004 */
    
  • PARI
    /* Roots by recursion. Find first root of ax^2 + b^x + c */
    rroot2(a,b,c,p) = { local(x=1,x1=1,j); for(j=1,p, x1=x; x=-c/(a*x+b); x=(x1+x)/2; /* Let x be the average of the last 2 values */ print1(numerator(x)","); ); } \\ Cino Hilliard, Sep 28 2008
    

Formula

a(n) = A001075(2^n).
a(n) = ((2+sqrt(3))^(2^n) + (2-sqrt(3))^(2^n))/2. - Bruno Berselli, Dec 20 2011
From Peter Bala, Nov 11 2012: (Start)
2*sqrt(3)/5 = Product_{n >= 0} (1 - 1/(2*a(n))).
sqrt(3) = Product_{n >= 0} (1 + 1/a(n)).
a(n) = (1/2)*A003010(n). (End)
a(n) = cos(2^n*arccos(2)). - Peter Luschny, Oct 12 2022
a(n) = A002531(2^(n+1)). - Robert FERREOL, Apr 13 2023

A244012 Numerators of rational approximations to sqrt(7) obtained from Newton's method.

Original entry on oeis.org

2, 11, 233, 108497, 23543191457, 1108563727961872518977, 2457827077905448997994482872789298261401217, 12081827889770476116093110581355561229584727594431650162181251776430351279198649072897
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
		

Crossrefs

Cf. A244013 (denominators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=7;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244013 Denominators of rational approximations to sqrt(7) obtained from Newton's method.

Original entry on oeis.org

1, 4, 88, 41008, 8898489952, 418997705236253480128, 928971316248341903257187589777603944778112, 4566501711345281867283814391125123371716411674583075407993026856131137508750543524608
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
		

Crossrefs

Cf. A244012 (numerators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=7;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244014 Numerators of rational approximations to sqrt(6) obtained from Newton's method.

Original entry on oeis.org

2, 5, 49, 4801, 46099201, 4250272665676801, 36129635465198759610694779187201, 2610701117696295981568349760414651575095962187244375364404428801
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
		

Crossrefs

The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=6;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244015 Denominators of rational approximations to sqrt(6) obtained from Newton's method.

Original entry on oeis.org

1, 2, 20, 1960, 18819920, 1735166549767840, 14749861913749949808286047759680, 1065814268211609269094400465471990022332221793124358274759711360
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
		

Crossrefs

Cf. A244014 (numerators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Magma
    m:=9; f:=[n eq 1 select 2 else (Self(n-1)+6/Self(n-1))/2: n in [1..m]]; [Denominator(f[n]): n in [1..m]]; // Vincenzo Librandi, Jan 12 2016
  • Maple
    N:=6;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A230338 Recurrence equation: a(0) = 1 and a(n) = a(n-1)*sqrt(21*a(n-1)^2 + 4) for n >= 1.

Original entry on oeis.org

1, 5, 115, 60605, 16831644835, 1298263252133919638045, 7723873922612696850892381990249713732303715, 273388347343560518533856033712658350781293745092679040607342582493129736504927611387805
Offset: 0

Views

Author

Peter Bala, Oct 30 2013

Keywords

Comments

For integer N, the recurrence equation a(n) = a(n-1)*sqrt((N^2 - 4)*a(n-1)^2 + 4) for n >= 1, with starting value a(0) = 1, produces an integer sequence. The present sequence is the case N = 5. Cf. A000079 (case N = 2), A058635 (case N = 3) and A071579 (case N = 4).
Sequence of numerators in the Engel series representation of 1/2*(7 - sqrt(21)) = 1 + 1/5 + 1 /115 + 1/60605 + .... The corresponding Engel expansion is A003487.
The sequence also has a description as a Pierce expansion of the quadratic irrational 1/2*(5 - sqrt(21)) to the base b := 1/sqrt(21) (see A058635 for a definition of this term).
The associated Pierce series representation of 1/2*(5 - sqrt(21)) to the base b begins 1/2*(5 - sqrt(21)) = b/1 - b^2/(1*5) + b^3/(1*5*115) - b^4/(1*5*115*60605) + ....
More generally, for n >= 0, the sequence [a(n), a(n+1), a(n+2), ...] gives a Pierce expansion of ( 1/2*(5 - sqrt(21)) )^(2^n) to the base b = 1/sqrt(21). Some examples are given below.

Examples

			Let b = 1/sqrt(21) and x = 1/2*(5 - sqrt(21)). We have the following Pierce expansions to base b:
x = b/1 - b^2/(1*5) + b^3/(1*5*115) - b^4/(1*5*115*60605) + b^5/(1*5*115*60605*16831644835) - ....
x^2 = b/5 - b^2/(5*115) + b^3/(5*115*60605) - b^4/(5*115*60605*16831644835) + ....
x^4 = b/115 - b^2/(115*60605) + b^3/(115*60605*16831644835) - ....
x^8 = b/60605 - b^2/(60605*16831644835) + ....
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n - 1]*Sqrt[21 a[n - 1]^2 + 4]; a[0] = 1; Array[a, 8, 0] (* Robert G. Wilson v, Mar 19 2014 *)
    a[ n_] := If[ n < 0, 0, ChebyshevU[2^n - 1, 5/2]]; (* Michael Somos, Dec 06 2016 *)
  • PARI
    a(n) = if( n<0, 0, imag( (5 + quadgen(84))^2^n) / 2^(2^n - 1)); /* Michael Somos, Dec 06 2016 */

Formula

a(n) = 1/sqrt(21)*( alpha^(2^n) - (1/alpha)^(2^n) ), where alpha = 1/2*(5 + sqrt(21)).
a(n) = product {k = 0..n-1} A003487(k).
Defining recurrence equation:
a(0) = 1 and a(n) = a(n-1)*sqrt(21*a(n-1)^2 + 4) for n >= 1.
Other recurrence equations:
a(0) = 1, a(1) = 5 and a(n)/a(n-1) = (a(n-1)/a(n-2))^2 - 2 for n >= 2.
a(0) = 1, a(1) = 5 and a(n)/a(n-1) = 21*a(n-2)^2 + 2 for n >= 2.
a(n) = A004254(2^n). - Michael Somos, Dec 06 2016
Showing 1-7 of 7 results.