cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007949 Greatest k such that 3^k divides n. Or, 3-adic valuation of n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Obeys the general recurrences for p-adic valuation discussed in A214411. - Redjan Shabani, Jul 17 2012
Lexicographically earliest cubefree sequence, which also (conjecturally) appears in the construction of the lexicographically earliest cubefree {0,1}-sequence A282317, cf. Example section of A286940. - M. F. Hasler, May 21 2017
The sequence is invariant under the "lower trim" operator: remove all zeros, and subtract one from each remaining term. - Franklin T. Adams-Watters, May 25 2017

References

  • F. Q. Gouvea, p-Adic Numbers, Springer-Verlag, 1993; see p. 23.

Crossrefs

Partial sums give A054861.
One less than A051064.

Programs

  • Haskell
    a007949 n = if m > 0 then 0 else 1 + a007949 n'
                where (n', m) = divMod n 3
    -- Reinhard Zumkeller, Jun 23 2013, May 14 2011
    
  • MATLAB
    % Input:
    %  n: an integer
    % Output:
    %  m: max power of 3 such that 3^m divides n
    %  M: 1-by-K matrix where M(i) is the max power of 3 such that 3^M(i) divides n
    function [m,M] = Omega3(n)
      M = NaN*zeros(1,n);
      M(1)=0; M(2)=0; M(3)=0;
        for k=4:n
          if M(k-3)~=0
            M(k)=M(k-k/3)+1;
          else
            M(k)=0;
          end
        end
        m=M(end);
    end
    % Redjan Shabani, Jul 17 2012
    
  • Magma
    [Valuation(n, 3): n in [1..110]]; // Bruno Berselli, Aug 05 2013
    
  • Maple
    A007949 := proc(n) option remember; if n mod 3 > 0 then 0 else procname(n/3)+1; fi; end;
    # alternative by R. J. Mathar, Mar 29 2017
    A007949 := proc(n)
        padic[ordp](n,3) ;
    end proc:
  • Mathematica
    p=3; Array[ If[ Mod[ #, p ]==0, Select[ FactorInteger[ # ], Function[ q, q[ [ 1 ] ]==p ], 1 ][ [ 1, 2 ] ], 0 ]&, 81 ]
    Nest[ Function[ l, {Flatten[(l /. {0 -> {0, 0, 1}, 1 -> {0, 0, 2}, 2 -> {0, 0, 3}, 3 -> {0, 0, 4}}) ]}], {0}, 5] (* Robert G. Wilson v, Mar 03 2005 *)
    IntegerExponent[Range[200], 3] (* Zak Seidov, Apr 15 2010 *)
    Table[If[Mod[n, 3] > 0, 0, 1 + b[n/3]], {n, 200}] (* Zak Seidov, Apr 15 2010 *)
  • PARI
    a(n)=valuation(n,3)
    
  • Python
    def a(n):
        k = 0
        while n > 0 and n%3 == 0: n //= 3; k += 1
        return k
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Aug 06 2021
  • Sage
    [valuation(n, 3) for n in (1..106)]  # Peter Luschny, Nov 16 2012
    
  • Scheme
    (define (A007949 n) (let loop ((n n) (k 0)) (cond ((not (zero? (modulo n 3))) k) (else (loop (/ n 3) (+ 1 k)))))) ;; Antti Karttunen, Oct 06 2017
    

Formula

a(n) = 0 if n != 0 (mod 3), otherwise a(n) = 1 + a(n/3). - Reinhard Zumkeller, Aug 12 2001, edited by M. F. Hasler, Aug 11 2015
From Ralf Stephan, Apr 12 2002: (Start)
a(n) = A051064(n) - 1.
G.f.: Sum_{k>=1} x^3^k/(1 - x^3^k). (End)
Fixed point of the morphism: 0 -> 001; 1 -> 002; 2 -> 003; 3 -> 004; 4 -> 005; etc.; starting from a(1) = 0. - Philippe Deléham, Mar 29 2004
a(n) mod 2 = 1 - A014578(n). - Reinhard Zumkeller, Oct 04 2008
Totally additive with a(p) = 1 if p = 3, 0 otherwise.
v_{m}(n) = Sum_{r>=1} (r/m^(r+1)) Sum_{j=1..m-1} Sum_{k=0..m^(r+1)-1} exp((2*k*Pi*i*(n+(m-j)*m^r)) / m^(r+1)). This formula is for the general case; for this specific one, set m=3. - A. Neves, Oct 04 2010
a(3n) = A051064(n), a(2n) = a(n), a(2n-1) = A253786(n). - Cyril Damamme, Aug 04 2015
a(3n) = a(n) + 1, a(pn) = a(n) for any other prime p != 3. - M. F. Hasler, Aug 11 2015
3^a(n) = A038500(n). - Antti Karttunen, Oct 09 2017
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/2. - Amiram Eldar, Jul 11 2020
a(n) = tau(n)/(tau(3*n) - tau(n)) - 1, where tau(n) = A000005(n). - Peter Bala, Jan 06 2021
a(n) = 3*Sum_{j=1..floor(log_3(n))} frac(binomial(n,3^j)*3^(j-1)/n). - Dario T. de Castro, Jul 10 2022
a(n) = A080342(gcd(n, 3^A080342(n))). - Alan Michael Gómez Calderón, Jul 28 2024

A081604 Number of digits in ternary representation of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 23 2003

Keywords

Comments

a(n) is the length of row n in table A054635. - Reinhard Zumkeller, Sep 05 2014

Examples

			a(8) = 2 because 8 = 22_3, having 2 digits.
a(9) = 3 because 9 = 100_3, having 3 digits.
		

Crossrefs

Programs

  • Haskell
    a081604 n = if n < 3 then 1 else a081604 (div n 3) + 1
    -- Reinhard Zumkeller, Sep 05 2014, Feb 21 2013
  • Maple
    A081604 := proc(n)
        max(1,1+ilog[3](n)) ;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    Table[Length[IntegerDigits[n, 3]], {n, 0, 99}] (* Alonso del Arte, Dec 30 2012 *)
    Join[{1},IntegerLength[Range[120],3]] (* Harvey P. Dale, Apr 07 2019 *)

Formula

a(n) = A062153(n) + 1 for n >= 1.
a(n) = A077267(n) + A062756(n) + A081603(n);
From Reinhard Zumkeller, Oct 19 2007: (Start)
0 <= A134021(n) - a(n) <= 1;
a(A134025(n)) = A134021(A134025(n));
a(A134026(n)) = A134021(A134026(n)) - 1. (End)
a(n+1) = -Sum_{k=1..n} mu(3*k)*floor(n/k). - Benoit Cloitre, Oct 21 2009
a(n) = floor(log_3(n)) + 1. - Can Atilgan and Murat Erşen Berberler, Dec 05 2012
a(n) = if n < 3 then 1 else a(floor(n/3)) + 1. - Reinhard Zumkeller, Sep 05 2014
G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(3^k). - Ilya Gutkovskiy, Jan 08 2017

A064235 The smallest power of 3 that is greater than or equal to n.

Original entry on oeis.org

1, 3, 3, 9, 9, 9, 9, 9, 9, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Sep 22 2001

Keywords

Comments

Let A_n be the upper triangular matrix in the group GL(n,3) of invertible n X n matrices over GF(3) that has zero entries below the diagonal and 1 elsewhere. For example for n=4 the matrix is / 1,1,1,1 / 0,1,1,1 / 0,0,1,1 / 0,0,0,1 /. a(n) is the order of this matrix as an element of GL(n,3).
For n>1 a(n) is the smallest integer such that gcd(a(n),2^a(n)+1) >= n. - Benoit Cloitre, Apr 21 2002
From Jianing Song, Jul 05 2025: (Start)
a(n+1) is the period of {binomial(N,n) mod 3: N in Z}. For the general result, see A349593.
Since the modulus (3) is a prime, the remainder of binomial(N,n) is given by Lucas's theorem. (End)

Crossrefs

Cf. A062383.
With offset 0, column 3 of A349593. A062383, A385552, A385553, and A385554 are respectively columns 2, 5, 6, and 10.

Programs

  • Haskell
    import Data.List (transpose)
    a064235 n = genericIndex a064235_list (n - 1)
    a064235_list = 1 : zs where
       zs = 3 : 3 : (map (* 3) $ concat $ transpose [zs, zs, zs])
    -- Reinhard Zumkeller, Sep 02 2015
    
  • Maple
    A064235 := proc(n)
            ceil(log(n)/log(3)) ;
            3^% ;
    end proc: # R. J. Mathar, Nov 06 2011
  • Mathematica
    nn=100;With[{p3=3^Range[0,Ceiling[Log[3,nn]]]},Flatten[Table[Select[ p3, #>=n&, 1],{n,nn}]]] (* Harvey P. Dale, Mar 14 2013 *)
  • Python
    from gmpy2 import digits
    def A064235(n): return 3**len(digits(n-1,3)) if n>1 else 1 # Chai Wah Wu, Oct 21 2024

Formula

a(n) = 3 ^ A080342(n). - Reinhard Zumkeller, Sep 02 2015
Sum_{n>=1} 1/a(n)^2 = 4/3. - Amiram Eldar, Aug 16 2022

Extensions

More terms from James Sellers, Sep 26 2001

A365458 The largest power of 3 that is less than or equal to n.

Original entry on oeis.org

1, 1, 3, 3, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 81, 81, 81, 81, 81
Offset: 1

Views

Author

Antti Karttunen, Sep 17 2023

Keywords

Examples

			a(2) = 1 because 3^0 = 1 <= 2.
a(3) = 3 because 3^1 = 3 <= 3.
a(4) = 3 because 3^1 = 3 <= 4.
		

Crossrefs

Programs

  • Mathematica
    Array[3^Floor@ Log[3, #] &, 90] (* Michael De Vlieger, Sep 17 2023 *)
  • PARI
    A365458(n) = if(1==n,n,my(k=0); while((3^k) < n, k++); if((3^k) > n,k--); (3^k));
    
  • PARI
    a(n) = 3^logint(n, 3); \\ Michel Marcus, Sep 17 2023
    
  • Python
    def A365458(n):
        kmin, kmax = 0, 1
        while 3**kmax <= n:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if 3**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return 3**kmin # Chai Wah Wu, Sep 17 2023

Formula

a(n) = 3^floor((log n) / (log 3)). - Michael De Vlieger, Sep 17 2023
a(n) = A000244(A062153(n)). - Michel Marcus, Sep 17 2023

A262070 a(n) = ceiling( log_3( binomial(n,2) ) ).

Original entry on oeis.org

0, 1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9
Offset: 2

Views

Author

R. J. Mathar, Sep 10 2015

Keywords

Comments

A lower bound on the number of weighings which suffice to determine the counterfeit (heavier) coins in a set of n coins given a balance scale and the information that there are exactly two heavier coins present.
Records occur at n=2, 3, 4, 5, 8, 14, 23, 39, 67, 116, 199, 345, 596,...

Crossrefs

Cf. A080342 (single counterfeit coin).

Programs

  • Magma
    [Ceiling(Log(3,Binomial(n,2))): n in [2..120]]; // Bruno Berselli, Sep 10 2015
  • Maple
    seq(ceil(log[3](binomial(n,2))),n=2..120) ;
  • Mathematica
    Ceiling[Log[3,Binomial[Range[2,120],2]]] (* Harvey P. Dale, Dec 13 2016 *)
  • PARI
    first(m)=vector(m,i,i++;ceil(log(binomial(i,2))/log(3))) \\ Anders Hellström, Sep 10 2015
    
Showing 1-5 of 5 results.