cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A018804 Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n).

Original entry on oeis.org

1, 3, 5, 8, 9, 15, 13, 20, 21, 27, 21, 40, 25, 39, 45, 48, 33, 63, 37, 72, 65, 63, 45, 100, 65, 75, 81, 104, 57, 135, 61, 112, 105, 99, 117, 168, 73, 111, 125, 180, 81, 195, 85, 168, 189, 135, 93, 240, 133, 195, 165, 200, 105, 243, 189, 260, 185, 171, 117, 360
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of times the number 1 appears in the character table of the cyclic group C_n. - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 02 2001
a(n) is the number of ways to express all fractions f/g whereby each product (f/g)*n is a natural number between 1 and n (using fractions of the form f/g with 1 <= f,g <= n). For example, for n=4 there are 8 such fractions: 1/1, 1/2, 2/2, 3/3, 1/4, 2/4, 3/4 and 4/4. - Ron Lalonde (ronronronlalonde(AT)hotmail.com), Oct 03 2002
Number of non-congruent solutions to xy == 0 (mod n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 06 2003
Conjecture: n>1 divides a(n)+1 iff n is prime. - Thomas Ordowski, Oct 22 2014
The above conjecture is false, with counterexample given by n = 3*37*43*42307*116341 and a(n)+1 = 26*n. - Varun Vejalla, Jun 19 2025
a(n) is the number of 0's in the multiplication table Z/nZ (cf. A000010 for number of 1's). - Eric Desbiaux, Jun 11 2015
{a(n)} == 1, 3, 1, 0, 1, 3, 1, 0, ... (mod 4). - Isaac Saffold, Dec 30 2017
Since a(p^e) = p^(e-1)*((p-1)e+p) it follows a(p) = 2p-1 and therefore p divides a(p)+1. - Ruediger Jehn, Jun 23 2022

Examples

			G.f. = x + 3*x^2 + 5*x^3 + 8*x^4 + 9*x^5 + 15*x^6 + 13*x^7 + 20*x^8 + ...
		

References

  • S. S. Pillai, On an arithmetic function, J. Annamalai University 2 (1933), pp. 243-248.
  • J. Sándor, A generalized Pillai function, Octogon Mathematical Magazine Vol. 9, No. 2 (2001), 746-748.

Crossrefs

Column 1 of A343510 and A343516.
Cf. A080997, A080998 for rankings of the positive integers in terms of centrality, defined to be the average fraction of an integer that it shares with the other integers as a gcd, or A018804(n)/n^2, also A080999, a permutation of this sequence (A080999(n) = A018804(A080997(n))).

Programs

  • Haskell
    a018804 n = sum $ map (gcd n) [1..n]  -- Reinhard Zumkeller, Jul 16 2012
    
  • Magma
    [&+[Gcd(n,k):k in [1..n]]:n in [1..60]]; // Marius A. Burtea, Nov 14 2019
  • Maple
    a:=n->sum(igcd(n,j),j=1..n): seq(a(n), n=1..60); # Zerinvary Lajos, Nov 05 2006
  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Sum[ d*EulerPhi[n/d], {d, d}]]; Table[f[n], {n, 60}] (* Robert G. Wilson v, Mar 20 2012 *)
    a[ n_] := If[ n < 1, 0, n Sum[ EulerPhi[d] / d, {d, Divisors@n}]]; (* Michael Somos, Jan 07 2017 *)
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jul 19 2019 *)
  • PARI
    {a(n) = direuler(p=2, n, (1 - X) / (1 - p*X)^2)[n]}; /* Michael Somos, May 31 2000 */
    
  • PARI
    a(n)={ my(ct=0); for(i=0,n-1,for(j=0,n-1, ct+=(Mod(i*j,n)==0) ) ); ct; } \\ Joerg Arndt, Aug 03 2013
    
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~,(f[i,2]*(f[i,1]-1)/f[i,1] + 1)*f[i,1]^f[i,2]) \\ Charles R Greathouse IV, Oct 28 2014
    
  • PARI
    a(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ Michel Marcus, Jan 07 2017
    
  • Python
    from sympy.ntheory import totient, divisors
    print([sum(n*totient(d)//d for d in divisors(n)) for n in range(1, 101)]) # Indranil Ghosh, Apr 04 2017
    
  • Python
    from sympy import factorint
    from math import prod
    def A018804(n): return prod(p**(e-1)*((p-1)*e+p) for p, e in factorint(n).items()) # Chai Wah Wu, Nov 29 2021
    

Formula

a(n) = Sum_{d|n} d*phi(n/d), where phi(n) is Euler totient function (cf. A000010). - Vladeta Jovovic, Apr 04 2001
Multiplicative; for prime p, a(p^e) = p^(e-1)*((p-1)e+p).
Dirichlet g.f.: zeta(s-1)^2/zeta(s).
a(n) = Sum_{d|n} d*tau(d)*mu(n/d). - Benoit Cloitre, Oct 23 2003
Equals A054523 * [1,2,3,...]. Equals row sums of triangle A010766. - Gary W. Adamson, May 20 2007
Equals inverse Mobius transform of A029935 = A054525 * (1, 2, 4, 5, 8, 8, 12, 12, ...). - Gary W. Adamson, Aug 02 2008, corrected Feb 07 2023
Equals row sums of triangle A127478. - Gary W. Adamson, Aug 03 2008
G.f.: Sum_{k>=1} phi(k)*x^k/(1 - x^k)^2, where phi(k) is the Euler totient function. - Ilya Gutkovskiy, Jan 02 2017
a(n) = Sum_{a = 1..n} Sum_{b = 1..n} Sum_{c = 1..n} 1, for n > 1. The sum is over a,b,c such that n*c - a*b = 0. - Benedict W. J. Irwin, Apr 04 2017
Proof: Let gcd(a, n) = g and x = n/g. Define B = {x, 2*x, ..., g*x}; then for all b in B there exists a number c such that a*b = n*c. Since the set B has g elements it follows that Sum_{b=1..n} Sum_{c=1..n} 1 >= g = gcd(a, n) and therefore Sum_{a=1..n} Sum_{b=1..n} Sum_{c=1..n} 1 >= Sum_{a=1..n} gcd(a, n). On the other hand, for all b not in B there is no number c <= n such that a*b = n*c and hence Sum_{b = 1..n} Sum_{c = 1..n} 1 = g. Therefore Sum_{a=1..n} Sum_{b = 1..n} Sum_{c = 1..n} 1 = a(n). - Ruediger Jehn, Jun 23 2022
a(2*n) = a(n)*(3-A007814(n)/(A007814(n)+2)) - Velin Yanev, Jun 30 2017
Proof: Let m = A007814(m) and decompose n into n = k*2^m. We know from Chai Wah Wu's program below that a(n) = Product(p_i^(e_i-1)*((p_i-1)*e_i+p_i)) where the numbers p_i are the prime factors of n and e_i are the corresponding exponents. Hence a(2n) = 2^m*(m+3)*a(k) = 2^m*(m+3)*a(k). On the other hand, a(n) = 2^(m-1)*(m+2)*a(k). Dividing the first equation by the second yields a(2n)/a(n) = 2*(m+3)/(m+2), which equals 3 - m/(m+2). Hence a(2n) = a(n)*(3 - m/(m+2)). - Ruediger Jehn, Jun 23 2022
Sum_{k=1..n} a(k) ~ 3*n^2/Pi^2 * (log(n) - 1/2 + 2*gamma - 6*Zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 08 2019
a(n) = Sum_{k=1..n} n/gcd(n,k)*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 10 2021
log(a(n)/n) << log n log log log n/log log n; in particular, a(n) << n^(1+e) for any e > 0. See Broughan link for bounds in terms of omega(n). - Charles R Greathouse IV, Sep 08 2022
a(n) = (1/4)*Sum_{k = 1..4*n} (-1)^k * gcd(k, 4*n) = (1/4) * A344372(2*n). - Peter Bala, Jan 01 2024

A080997 The positive integers arranged in nonincreasing order of centrality (the fraction of n represented by the average gcd of n and the other positive integers).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 12, 10, 7, 9, 15, 14, 18, 16, 20, 24, 11, 30, 13, 21, 28, 22, 36, 17, 40, 27, 26, 42, 32, 48, 25, 19, 60, 33, 35, 45, 44, 34, 23, 54, 56, 39, 72, 50, 38, 52, 84, 66, 70, 90, 63, 29, 80, 46, 31, 51, 64, 120, 55, 78, 96, 75, 68, 57, 108, 49, 88, 37, 65, 105
Offset: 1

Views

Author

Matthew Vandermast, Feb 28 2003

Keywords

Comments

Equivalent descriptions of the centrality of n: 1) Probability that a randomly chosen product in the multiplication table for positive integers (A003991; see also A061017) is a multiple of n.
2) Probability taken over all exponential numerical bases that if the last digit of a number represents n, the number is a multiple of n. (For example, in base 10, the probability of a number that ends in 5 being a multiple of 5 is 1. Over all possible bases, the fraction of numbers ending in 5 that are multiples of 5 is the centrality of 5, 9/25 or .36.)
An infinite number of integers have the same centrality as at least one other integer. The only such examples in the first 114 terms of the sequence are 64 and 120, which share a centrality of .0625; they are listed in numerical order.

Examples

			The number 6 has a gcd of 1 with all numbers congruent to 1 or 5 modulo 6, 2 with all numbers congruent to 2 or 4 mod 6, 3 with all 3 mod 6 numbers and 6 with all numbers congruent to 0 mod 6. Its average gcd with other integers is 2.5 (A018804(6)/6), which represents 5/12 or .41666... of 6. This places 6 fifth in centrality among the integers, behind 1 (whose centrality is 1), 2 (.75), 3 (5/9 or .555...) and 4 (.5); it is therefore listed fifth in the sequence.
		

Crossrefs

Cf. A018804, A080999 for a formula for the numerator of the unreduced centrality fraction. Other related sequences are A080998, A081000, A081001, A081028, A081029.

Programs

  • Mathematica
    maxTerms = 100; Clear[c, s]; c[n_] := c[n] = Sum[d*EulerPhi[n/d], {d, Divisors[n] }]/n^2; s[terms_] := s[terms] = Sort[Range[terms], c[#1] >= c[#2] & ][[1 ;; maxTerms]]; s[terms = maxTerms]; s[terms += maxTerms]; While[s[terms] != s[terms - maxTerms], terms += maxTerms]; A080997 = s[terms] (* Jean-François Alcover, Feb 19 2015 *)

Formula

Formula for centrality of n: A018804(n)/n^2, where A018804(n) is the sum of gcd (k, n) for 1 <= k <= n.
The centrality of a(n) is given by A080999(n)/(a(n))^2.
Showing 1-2 of 2 results.