cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A081294 Expansion of (1-2*x)/(1-4*x).

Original entry on oeis.org

1, 2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912, 2147483648, 8589934592, 34359738368, 137438953472, 549755813888, 2199023255552, 8796093022208, 35184372088832
Offset: 0

Views

Author

Paul Barry, Mar 17 2003

Keywords

Comments

Binomial transform of A046717. Second binomial transform of A000302 (with interpolated zeros). Partial sums are A007583.
Counts closed walks of length 2n at a vertex of the cyclic graph on 4 nodes C_4. With interpolated zeros, counts closed walks of length n at a vertex of the cyclic graph on 4 nodes C_4. - Paul Barry, Mar 10 2004
In general, Sum_{k=0..n} Sum_{j=0..n} C(2*(n-k), j)*C(2*k, j)*r^j has expansion (1 - (r+1)*x)/(1 - (r+3)*x - (r-1)*(r+3)*x^2 + (r-1)^3*x^3). - Paul Barry, Jun 04 2005 [corrected by Jason Yuen, Jan 20 2025]
a(n) is the number of binary strings of length 2n with an even number of 0's (and hence an even number of 1's). - Toby Gottfried, Mar 22 2010
Number of compositions of n where there are 2 sorts of part 1, 4 sorts of part 2, 8 sorts of part 3, ..., 2^k sorts of part k. - Joerg Arndt, Aug 04 2014
a(n) is also the number of permutations simultaneously avoiding 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl Aug 07 2014
INVERT transform of powers of 2 (A000079). - Alois P. Heinz, Feb 11 2021
a(n) is the number of elements in an n-interval of the binomial poset of even-sized subsets of positive integers, cf. Stanley reference and second formula by Paul Barry. Each multichain 0 = x_0 <= x_1 <= x_2 = 1 in such an n-interval corresponds to a closed walk described above by Paul Barry. More generally, each multichain 0 = x_0 <= x_1 <= ... <= x_k = 1 corresponds to a closed walk of length 2n on the k-dimensional hypercube, cf. A054879, A092812, A121822. - Geoffrey Critzer, Apr 21 2023

Examples

			G.f. = 1 + 2*x + 8*x^2 + 32*x^3 + 128*x^4 + 512*x^5 + 2048*x^6 + 8192*x^7 + ...
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Vol 1, second edition, Example 3.18.3-f, page 323.

Crossrefs

Row sums of triangle A136158.
Cf. A000079, A081295, A009117, A016742, A054879, A092812, A121822. Essentially the same as A004171.

Programs

  • Magma
    [(4^n+0^n)/2: n in [0..30]]; // Vincenzo Librandi, Jul 26 2011
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1-2*x)/(1-4*x))); // Marius A. Burtea, Jan 20 2020
    
  • Maple
    a:= n-> 2^max(0, (2*n-1)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 20 2017
  • Mathematica
    CoefficientList[Series[(1-2x)/(1-4x),{x,0,40}],x] (* or *)
    Join[{1}, NestList[4 # &, 2, 40]] (* Harvey P. Dale, Apr 22 2011 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    x='x+O('x^100); Vec((1-2*x)/(1-4*x)) \\ Altug Alkan, Dec 21 2015

Formula

G.f.: (1-2*x)/(1-4*x).
a(n) = 4*a(n-1) n > 1, with a(0)=1, a(1)=2.
a(n) = (4^n+0^n)/2 (i.e., 1 followed by 4^n/2, n > 0).
E.g.f.: exp(2*x)*cosh(2*x) = (exp(4*x)+exp(0))/2. - Paul Barry, May 10 2003
a(n) = Sum_{k=0..n} C(2*n, 2*k). - Paul Barry, May 20 2003
a(n) = A001045(2*n+1) - A001045(2*n-1) + 0^n/2. - Paul Barry, Mar 10 2004
a(n) = 2^n*A011782(n); a(n) = gcd(A011782(2n), A011782(2n+1)). - Paul Barry, Jan 12 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(2*(n-k), j)*C(2*k, j). - Paul Barry, Jun 04 2005
a(n) = Sum_{k=0..n} A038763(n,k). - Philippe Deléham, Sep 22 2006
a(n) = Integral_{x=0..4} p(n,x)^2/(Pi*sqrt(x(4-x))) dx, where p(n,x) is the sequence of orthogonal polynomials defined by C(2*n,n): p(n,x) = (2*x-4)*p(n-1,x) - 4*p(n-2,x), with p(0,x)=1, p(1,x)=-2+x. - Paul Barry, Mar 01 2007
a(n) = ((2+sqrt(4))^n + (2-sqrt(4))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Nov 22 2008
a(n) = A000079(n) * A011782(n). - Philippe Deléham, Dec 01 2008
a(n) = A004171(n-1) = A028403(n) - A000079(n) for n >= 1. - Jaroslav Krizek, Jul 27 2009
a(n) = Sum_{k=0..n} A201730(n,k)*3^k. - Philippe Deléham, Dec 06 2011
a(n) = Sum_{k=0..n} A134309(n,k)*2^k = Sum_{k=0..n} A055372(n,k). - Philippe Deléham, Feb 04 2012
G.f.: Q(0), where Q(k) = 1 - 2*x/(1 - 2/(2 - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 29 2013
E.g.f.: 1/2 + exp(4*x)/2 = (Q(0)+1)/2, where Q(k) = 1 + 4*x/(2*k+1 - 2*x*(2*k+1)/(2*x + (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 29 2013
a(n) = ceiling( 2^(2n-1) ). - Wesley Ivan Hurt, Jun 30 2013
G.f.: 1 + 2*x/(1 + x)*( 1 + 5*x/(1 + 4*x)*( 1 + 8*x/(1 + 7*x)*( 1 + 11*x/(1 + 10*x)*( 1 + ... )))). - Peter Bala, May 27 2017
Sum_{n>=0} 1/a(n) = 5/3. - Amiram Eldar, Aug 18 2022
Sum_{n>=0} a(n)*x^n/A000680(n) = E(x)^2 where E(x) = Sum_{n>=0} x^n/A000680(n). - Geoffrey Critzer, Apr 21 2023

A344817 a(n) = Sum_{k=1..n} floor(n/k) * (-2)^(k-1).

Original entry on oeis.org

1, 0, 5, -4, 13, -16, 49, -88, 173, -324, 701, -1384, 2713, -5416, 10989, -21916, 43621, -87224, 174921, -349872, 698773, -1397356, 2796949, -5593872, 11183361, -22366976, 44742149, -89483716, 178951741, -357903312, 715838513, -1431678040, 2863290285
Offset: 1

Views

Author

Seiichi Manyama, May 29 2021

Keywords

Crossrefs

Column k=2 of A344824.
Cf. A081295.
Sums of the form Sum_{k=1..n} q^(k-1)*floor(n/k): A344820 (q=-n), A344819 (q=-4), A344818 (q=-3), this sequence (q=-2), A059851 (q=-1), A006218 (q=1), A268235 (q=2), A344814 (q=3), A344815 (q=4), A344816 (q=5), A332533 (q=n).

Programs

  • Magma
    A344817:= func< n | (&+[Floor(n/k)*(-2)^(k-1): k in [1..n]]) >;
    [A344817(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Mathematica
    a[n_] := Sum[(-2)^(k - 1) * Quotient[n, k], {k, 1, n}]; Array[a, 30] (* Amiram Eldar, May 29 2021 *)
  • PARI
    a(n) = sum(k=1, n, n\k*(-2)^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, (-2)^(d-1)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+2*x^k))/(1-x))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (-2)^(k-1)*x^k/(1-x^k))/(1-x))
    
  • SageMath
    def A344817(n): return sum((n//k)*(-2)^(k-1) for k in range(1,n+1))
    [A344817(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} (-2)^(d-1).
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k/(1 + 2*x^k).
G.f.: (1/(1 - x)) * Sum_{k>=1} (-2)^(k-1) * x^k/(1 - x^k).
a(n) ~ -(-1)^n * 2^n / 3. - Vaclav Kotesovec, Jun 05 2021

A128315 Inverse Moebius transform of signed A007318.

Original entry on oeis.org

1, 0, 1, 2, -2, 1, -1, 4, -3, 1, 2, -4, 6, -4, 1, 0, 4, -9, 10, -5, 1, 2, -6, 15, -20, 15, -6, 1, -2, 11, -24, 36, -35, 21, -7, 1, 3, -10, 29, -56, 70, -56, 28, -8, 1, 0, 6, -30, 80, -125, 126, -84, 36, -9, 1, 2, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1, -2, 18, -67, 176, -335, 463, -462, 330, -165, 55, -11, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 25 2007

Keywords

Comments

Examples

			First few rows of the triangle:
   1;
   0,  1;
   2, -2,  1;
  -1,  4, -3,  1;
   2, -4,  6, -4,  1;
   0,  4, -9, 10, -5, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A128315:= func< n,k | (&+[0^(n mod j)*(-1)^(k+j)*Binomial(j-1, k-1): j in [k..n]]) >;
    [A128315(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 22 2024
    
  • Mathematica
    A128315[n_, k_]:= (-1)^k*DivisorSum[n, (-1)^#*Binomial[#-1, k-1] &];
    Table[A128315[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jun 22 2024 *)
  • SageMath
    def A128315(n,k): return sum( 0^(n%j)*(-1)^(k+j)*binomial(j-1,k-1) for j in range(k,n+1))
    flatten([[A128315(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 22 2024

Formula

T(n, k) = A051731(n, k) * A130595(n-1, k-1) as infinite lower triangular matrices.
T(n, 1) = A048272(n).
Sum_{k=1..n} T(n, k) = A000012(n) = 1 (row sums).
From G. C. Greubel, Jun 22 2024: (Start)
T(n, k) = (-1)^k * Sum_{d|n} (-1)^d * binomial(d-1, k-1).
T(n, 2) = A325940(n), n >= 2.
T(n, 3) = A363615(n), n >= 3.
T(n, 4) = A363616(n), n >= 4.
T(2*n-1, n) = (-1)^(n-1)*A000984(n-1), n >= 1.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A081295(n).
Sum_{k=1..n} k*T(n, k) = A000034(n-1), n >= 1.
Sum_{k=1..n} (k+1)*T(n, k) = A010693(n-1), n >= 1. (End)

Extensions

a(43) = 28 inserted and more terms from Georg Fischer, Jun 05 2023

A101561 a(n) = (-1)^n * [x^n] Sum_{k>=1} x^(k-1)/(1+3*x^k).

Original entry on oeis.org

1, 2, 10, 29, 82, 236, 730, 2216, 6571, 19604, 59050, 177410, 531442, 1593596, 4783060, 14351123, 43046722, 129133838, 387420490, 1162281098, 3486785140, 10460294156, 31381059610, 94143358424, 282429536563, 847288078004, 2541865834900, 7625599078610
Offset: 0

Views

Author

Paul Barry, Dec 07 2004

Keywords

Crossrefs

Programs

  • Magma
    A101561:= func< n | (&+[(-1)^(n-k)*3^k*0^((n+1) mod (k+1)): k in [0..n]]) >;
    [A101561(n): n in [0..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    a[n_]:= Sum[(-1)^(n-k) * If[Mod[n+1, k+1]==0, 1, 0] * 3^k, {k, 0, n}];
    Table[a[n], {n, 0, 25}] (* James C. McMahon, Jan 01 2024 *)
    A101561[n_]:= (-1)^n*DivisorSum[n+1, (-3)^(#-1) &];
    Table[A101561[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
  • SageMath
    def A101561(n): return sum((-1)^(n+k)*3^k*0^((n+1)%(k+1)) for k in range(n+1))
    [A101561(n) for n in range(41)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * 3^k * A051731(n+1, k+1).
a(n) = (-1)^n * Sum_{d|n+1} (-3)^(d-1). - G. C. Greubel, Jun 25 2024

A101562 a(n) = (-1)^n * coefficient of x^n in Sum_{k>=1} x^(k-1)/(1+4*x^k).

Original entry on oeis.org

1, 3, 17, 67, 257, 1011, 4097, 16451, 65553, 261891, 1048577, 4195379, 16777217, 67104771, 268435729, 1073758275, 4294967297, 17179804659, 68719476737, 274878168899, 1099511631889, 4398045462531, 17592186044417, 70368748389427
Offset: 0

Views

Author

Paul Barry, Dec 07 2004

Keywords

Crossrefs

Programs

  • Magma
    A101562:= func< n | (&+[(-1)^(n-k)*4^k*0^((n+1) mod (k+1)): k in [0..n]]) >;
    [A101562(n): n in [0..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    A101562[n_]:= (-1)^n*DivisorSum[n+1, (-4)^(#-1) &];
    Table[A101562[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
  • SageMath
    def A101562(n): return sum((-1)^(n+k)*4^k*0^((n+1)%(k+1)) for k in range(n+1))
    [A101562(n) for n in range(41)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * 4^k * A051731(n+1, k+1).
a(n) = (-1)^n * Sum_{d|n+1} (-4)^(d-1). - G. C. Greubel, Jun 25 2024

A101563 a(n) = (-1)^n * coefficient of x^n in Sum_{k>=1} x^(k-1)/(1+10*x^k).

Original entry on oeis.org

1, 9, 101, 1009, 10001, 99909, 1000001, 10001009, 100000101, 999990009, 10000000001, 100000100909, 1000000000001, 9999999000009, 100000000010101, 1000000010001009, 10000000000000001, 99999999900099909
Offset: 0

Views

Author

Paul Barry, Dec 07 2004

Keywords

Crossrefs

Programs

  • Magma
    A101563:= func< n | (&+[(-1)^(n-k)*(10)^k*0^((n+1) mod (k+1)): k in [0..n]]) >;
    [A101563(n): n in [0..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    A101563[n_]:= (-1)^n*DivisorSum[n+1, (-10)^(#-1) &];
    Table[A101563[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
  • SageMath
    def A101563(n): return sum((-1)^(n+k)*(10)^k*0^((n+1)%(k+1)) for k in range(n+1))
    [A101563(n) for n in range(41)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (10)^k * A051731(n+1, k+1).
a(n) = (-1)^n * Sum_{d|n+1} (-10)^(d-1). - G. C. Greubel, Jun 25 2024
Showing 1-6 of 6 results.