cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A081460 Consider the mapping f(r) = (1/2)*(r + N/r) from rationals to rationals where N = 5. Starting with a = 2 and applying the mapping to each new (reduced) rational number gives 2, 9/4, 161/72, 51841/23184, ..., tending to N^(1/2). Sequence gives values of the denominators.

Original entry on oeis.org

1, 4, 72, 23184, 2403763488, 25840354427429161536, 2986152136938872067784669198846010266752, 39878504028822311675150039382403961856254569551519724209276629577579916539865344
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Comments

Related sequence pairs (numerator, denominator) can be obtained by choosing N = 2, 3, 6, etc.
The sequence satisfies the Pell equation A081459(n+1)^2 - 5*a(n+1)^2 = 1. - Vincenzo Librandi, Dec 20 2011

Crossrefs

Programs

  • Magma
    m:=8; f:=[ n eq 1 select 2 else (Self(n-1)+5/Self(n-1))/2: n in [1..m] ]; [ Denominator(f[n]): n in [1..m] ]; // Bruno Berselli, Dec 20 2011
  • Mathematica
    Table[Fibonacci[2^(n - 1)*3], {n, 1, 8}]/2 (* Amiram Eldar, Apr 07 2023 *)
  • PARI
    {r=2; N=5; for(n=1,8,a=numerator(r); b=denominator(r); print1(b,","); r=(1/2)*(r + N/r))}
    

Formula

a(n) = 2*a(n-1)*A081459(n-1). - Mario Catalani (mario.catalani(AT)unito.it), May 21 2003
a(n) = A000045(A007283(n-1))/2. - Ehren Metcalfe, Oct 07 2017
From Amiram Eldar, Apr 07 2023: (Start)
a(n) = A079613(n-1)/2.
a(n) = Product_{k=1..n-1} L(3*2^(n-1-k)), where L(k) is the k-th Lucas number (A000032). (End)
a(n) = A001076(2^(n-1)). - Robert FERREOL, Apr 18 2023

Extensions

Edited and extended by Klaus Brockhaus and Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
a(8) corrected by Vincenzo Librandi, Dec 20 2011

A219511 Pierce expansion of 144 - 64*sqrt(5).

Original entry on oeis.org

1, 9, 40, 161, 648, 51841, 207368, 5374978561, 21499914248, 57780789062419261441, 231123156249677045768, 6677239169351578707225356193679818792961, 26708956677406314828901424774719275171848
Offset: 0

Views

Author

Peter Bala, Nov 23 2012

Keywords

Comments

Paradis et al. have determined the Pierce expansion of the quadratic irrationality 2*(p - 1)*(p - sqrt(p^2 - 1)), p a positive integer greater than or equal to 3. This is the case p = 9. For other cases see A219508 (p = 3), A219509 (p = 5) and A219510 (p = 7).

Crossrefs

Cf. A081459, A219508 (p = 3), A219509 (p = 5), A219510 (p = 7).

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[144 - 64*Sqrt[5] , 7!], 10] (* G. C. Greubel, Nov 15 2016 *)
  • PARI
    r=(9 + 4*sqrt(5))/16; for(n=1, 10, print(floor(r), ", "); r=r/(r-floor(r))) \\ G. C. Greubel, Nov 15 2016

Formula

a(2*n) = 2*{(2 + sqrt(5))^(2^n) + (2 - sqrt(5))^(2^n) + 2} for n >= 1.
a(2*n-1) = 1/2*{(2 + sqrt(5))^(2^n) + (2 - sqrt(5))^(2^n)} for n >= 1.
Recurrence equations: a(0) = 1, a(1) = 9 and for n >= 1, a(2*n) = 4*(a(2*n-1) + 1) and a(2*n+1) = 2*(a(2*n-1))^2 - 1.
144 - 64*sqrt(5) = 1 - 1/9 + 1/(9*40) - 1/(9*40*161) + 1/(9*40*161*648) - ....
a(2*n) = 8*A081459(n)^2 for n >= 2.
a(2*n+1) = A081459(n+2) for n >= 0.

A244012 Numerators of rational approximations to sqrt(7) obtained from Newton's method.

Original entry on oeis.org

2, 11, 233, 108497, 23543191457, 1108563727961872518977, 2457827077905448997994482872789298261401217, 12081827889770476116093110581355561229584727594431650162181251776430351279198649072897
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
		

Crossrefs

Cf. A244013 (denominators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=7;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244013 Denominators of rational approximations to sqrt(7) obtained from Newton's method.

Original entry on oeis.org

1, 4, 88, 41008, 8898489952, 418997705236253480128, 928971316248341903257187589777603944778112, 4566501711345281867283814391125123371716411674583075407993026856131137508750543524608
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
		

Crossrefs

Cf. A244012 (numerators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=7;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244014 Numerators of rational approximations to sqrt(6) obtained from Newton's method.

Original entry on oeis.org

2, 5, 49, 4801, 46099201, 4250272665676801, 36129635465198759610694779187201, 2610701117696295981568349760414651575095962187244375364404428801
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
		

Crossrefs

The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=6;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244015 Denominators of rational approximations to sqrt(6) obtained from Newton's method.

Original entry on oeis.org

1, 2, 20, 1960, 18819920, 1735166549767840, 14749861913749949808286047759680, 1065814268211609269094400465471990022332221793124358274759711360
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
		

Crossrefs

Cf. A244014 (numerators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Magma
    m:=9; f:=[n eq 1 select 2 else (Self(n-1)+6/Self(n-1))/2: n in [1..m]]; [Denominator(f[n]): n in [1..m]]; // Vincenzo Librandi, Jan 12 2016
  • Maple
    N:=6;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A083696 a(n) = Sum_{r=0..2^(n-1)} (5^r/(2r)!)*Product_{k=0..2r-1} (2^n - k).

Original entry on oeis.org

1, 6, 56, 6016, 72318976, 10460064284409856, 218825889667954898996994670329856, 95769539977943941232017762100658986141884645207653888255921750016
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), May 22 2003

Keywords

Comments

Similar to A081459: a(n) is the numerator of the same mapping f(r) = (1/2)*(r + 5/r) but with initial value r=1.

Crossrefs

Programs

  • Magma
    [2^(2^n -1)*Lucas(2^n): n in [0..8]]; // G. C. Greubel, Jan 14 2022
  • Mathematica
    Table[Sum[Product[2^n - k, {k, 0, 2*r - 1}]5^r/(2*r)!, {r, 0, 2^(n - 1)}], {n, 0, 8}]
    Table[2^(2^n - 1)*LucasL[2^n], {n, 0, 8}] (* Vaclav Kotesovec, Jan 08 2021 *)
  • Sage
    [2^(2^n -1)*lucas_number2(2^n, 1, -1) for n in (0..8)] # G. C. Greubel, Jan 14 2022
    

Formula

a(n)/A083697(n) converges to sqrt(5).
a(n) = a(n-1)^2 + 5*A083697(n-1)^2.
a(n) = 2^(2^n - 1) * Lucas(2^n). - Vaclav Kotesovec, Jan 08 2021

A228933 Optimal ascending continued fraction expansion of phi-1=1/phi=(sqrt(5)-1)/2 .

Original entry on oeis.org

2, 4, -18, 322, 103682, 10749957122, 115561578124838522882, 13354478338703157414450712387359637585922, 178342091698891843163466683840822101223162205277179656650156983624835803932590082
Offset: 1

Views

Author

Giovanni Artico, Sep 10 2013

Keywords

Comments

See A228929 for the definition of "optimal ascending continued fraction".
Conjecture: The golden ratio (phi) expansion exhibits from the fourth term the recurrence relation a(n) = a(n-1)^2 - 2 described in A228931.

Examples

			phi = 1+1/2*(1+1/4*(1-1/18*(1+1/322*(1+1/103682*(1+1/10749957122*(1+...))))))
		

Crossrefs

Programs

  • Maple
    ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
    # List the first 8 terms of the expansion of 1/phi
    ArticoExp((sqrt(5)-1)/2,8)
  • Mathematica
    Flatten[{2, 4, RecurrenceTable[{a[n] == a[n-1]^2 - 2, a[3] == -18}, a, {n, 3, 10}]}] (* Vaclav Kotesovec, Sep 20 2013 *)

Formula

a(n) = a(n-1)^2 - 2 for n>3.
For n>3, a(n) = (sqrt(5)+2)^(2^(n-2)) + (sqrt(5)-2)^(2^(n-2)). - Vaclav Kotesovec, Sep 20 2013
a(n) = 2*A081459(n-1) for n>3. - Amiram Eldar, Apr 07 2023

A319749 a(n) is the numerator of the Heron sequence with h(0)=3.

Original entry on oeis.org

3, 11, 119, 14159, 200477279, 40191139395243839, 1615327685887921300502934267457919, 2609283532796026943395592527806764363779539144932833602430435810559
Offset: 0

Views

Author

Paul Weisenhorn, Sep 27 2018

Keywords

Comments

The denominator of the Heron sequence is in A319750.
The following relationship holds between the numerator of the Heron sequence and the numerator of the continued fraction A041018(n)/A041019(n) convergent to sqrt(13).
n even: a(n)=A041018((5*2^n-5)/3).
n odd: a(n)=A041018((5*2^n-1)/3).
More generally, all numbers c(n)=A078370(n)=(2n+1)^2+4 have the same relationship between the numerator of the Heron sequence and the numerator of the continued fraction convergent to 2n+1.
sqrt(c(n)) has the continued fraction 2n+1; n,1,1,n,4n+2.
hn(n)^2-c(n)*hd(n)^2=4 for n>1.
From Peter Bala, Mar 29 2022: (Start)
Applying Heron's method (sometimes called the Babylonian method) to approximate the square root of the function x^2 + 4, starting with a guess equal to x, produces the sequence of rational functions [x, 2*T(1,(x^2+2)/2)/x, 2*T(2,(x^2+2)/2)/( 2*x*T(1,(x^2+2)/2) ), 2*T(4,(x^2+2)/2)/( 4*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2) ), 2*T(8,(x^2+2)/2)/( 8*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2)*T(4,(x^2+2)/2) ), ...], where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. The present sequence is the case x = 3. Cf. A001566 and A058635 (case x = 1), A081459 and A081460 (essentially the case x = 4). (End)

Examples

			A078370(2)=29.
hn(0)=A041046(0)=5; hn(1)=A041046(3)=27; hn(2)=A041046(5)=727;
hn(3)=A041046(13)=528527.
		

Crossrefs

2*T(2^n,x/2) modulo differences of offset: A001566 (x = 3 and x = 7), A003010 (x = 4), A003487 (x = 5), A003423 (x = 6), A346625 (x = 8), A135927 (x = 10), A228933 (x = 18).

Programs

  • Maple
    hn[0]:=3:  hd[0]:=1:
    for n from 1 to 6 do
    hn[n]:=(hn[n-1]^2+13*hd[n-1]^2)/2:
    hd[n]:=hn[n-1]*hd[n-1]:
       printf("%5d%40d%40d\n", n, hn[n], hd[n]):
    end do:
    #alternative program
    a := n -> if n = 0 then 3 else simplify( 2*ChebyshevT(2^(n-1), 11/2) ) end if:
    seq(a(n), n = 0..7); # Peter Bala, Mar 16 2022
  • Python
    def aupton(nn):
        hn, hd, alst = 3, 1, [3]
        for n in range(nn):
            hn, hd = (hn**2 + 13*hd**2)//2, hn*hd
            alst.append(hn)
        return alst
    print(aupton(7)) # Michael S. Branicky, Mar 16 2022

Formula

h(n) = hn(n)/hd(n); hn(0)=3; hd(0)=1.
hn(n+1) = (hn(n)^2+13*hd(n)^2)/2.
hd(n+1) = hn(n)*hd(n).
A041018(n) = A010122(n)*A041018(n-1) + A041018(n-2).
A041019(n) = A010122(n)*A041019(n-1) + A041019(n-2).
From Peter Bala, Mar 16 2022: (Start)
a(n) = 2*T(2^(n-1),11/2) for n >= 1, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = 2*T(2^n, 3*sqrt(-1)/2) for n >= 2.
a(n) = ((11 + 3*sqrt(13))/2)^(2^(n-1)) + ((11 - 3*sqrt(13))/2)^(2^(n-1)) for n >= 1.
a(n+1) = a(n)^2 - 2 for n >= 1.
a(n) = A057076(2^(n-1)) for n >= 1.
Engel expansion of (1/6)*(13 - 3*sqrt(13)); that is, (1/6)*(13 - 3*sqrt(13)) = 1/3 + 1/(3*11) + 1/(3*11*119) + .... (Define L(n) = (1/2)*(n - sqrt(n^2 - 4)) for n >= 2 and show L(n) = 1/n + L(n^2-2)/n. Iterate this relation with n = 11. See also Liardet and Stambul, Section 4.)
sqrt(13) = 6*Product_{n >= 0} (1 - 1/a(n)).
sqrt(13) = (9/5)*Product_{n >= 0} (1 + 2/a(n)). See A001566. (End)

Extensions

a(6) and a(7) added by Peter Bala, Mar 16 2022
Showing 1-9 of 9 results.