A081460 Consider the mapping f(r) = (1/2)*(r + N/r) from rationals to rationals where N = 5. Starting with a = 2 and applying the mapping to each new (reduced) rational number gives 2, 9/4, 161/72, 51841/23184, ..., tending to N^(1/2). Sequence gives values of the denominators.
1, 4, 72, 23184, 2403763488, 25840354427429161536, 2986152136938872067784669198846010266752, 39878504028822311675150039382403961856254569551519724209276629577579916539865344
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..11
Programs
-
Magma
m:=8; f:=[ n eq 1 select 2 else (Self(n-1)+5/Self(n-1))/2: n in [1..m] ]; [ Denominator(f[n]): n in [1..m] ]; // Bruno Berselli, Dec 20 2011
-
Mathematica
Table[Fibonacci[2^(n - 1)*3], {n, 1, 8}]/2 (* Amiram Eldar, Apr 07 2023 *)
-
PARI
{r=2; N=5; for(n=1,8,a=numerator(r); b=denominator(r); print1(b,","); r=(1/2)*(r + N/r))}
Formula
a(n) = 2*a(n-1)*A081459(n-1). - Mario Catalani (mario.catalani(AT)unito.it), May 21 2003
From Amiram Eldar, Apr 07 2023: (Start)
a(n) = A079613(n-1)/2.
a(n) = Product_{k=1..n-1} L(3*2^(n-1-k)), where L(k) is the k-th Lucas number (A000032). (End)
a(n) = A001076(2^(n-1)). - Robert FERREOL, Apr 18 2023
Extensions
Edited and extended by Klaus Brockhaus and Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
a(8) corrected by Vincenzo Librandi, Dec 20 2011
Comments