cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A081459 Consider the mapping f(r) = (1/2)*(r + N/r) from rationals to rationals where N = 5. Starting with r = 2 and applying the mapping to each new (reduced) rational number gives 2, 9/4, 161/72, 51841/23184, ..., tending to N^(1/2). Sequence gives values of the numerators.

Original entry on oeis.org

2, 9, 161, 51841, 5374978561, 57780789062419261441, 6677239169351578707225356193679818792961, 89171045849445921581733341920411050611581102638589828325078491812417901966295041
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Comments

Related sequence pairs (numerator, denominator) can be obtained by choosing N = 2, 3, 6 etc.
The sequence satisfies the Pell equation a(n+1)^2 - 5*A081460(n+1)^2 = 1. - Vincenzo Librandi, Dec 20 2011

Crossrefs

Programs

  • Magma
    m:=8; f:=[ n eq 1 select 2 else (Self(n-1)+5/Self(n-1))/2: n in [1..m] ]; [ Numerator(f[n]): n in [1..m] ]; // Bruno Berselli, Dec 20 2011
  • Mathematica
    k = 4; Table[Simplify[Expand[(1/2) (((k + Sqrt[k^2 + 4])/2)^(2^(n - 1)) + ((k - Sqrt[k^2 + 4])/2)^(2^(n - 1)))]], {n, 1, 6}] (* Artur Jasinski, Oct 12 2008 *)
    aa = {}; k = 9; Do[AppendTo[aa, k]; k = 2 k^2 - 1, {n, 1, 5}]; aa (* Artur Jasinski, Oct 12 2008 *)
  • PARI
    {r=2; N=5; for(n=1,8,a=numerator(r); b=denominator(r); print1(a,","); r=(1/2)*(r + N/r) )}
    

Formula

a(n) = a(n-1)^2 + 5*A081460(n-1)^2. - Mario Catalani (mario.catalani(AT)unito.it), May 21 2003
a(n) = (1/2)*(((4+2*sqrt(5))/2)^(2^(n-1)) + ((4-2*sqrt(5))/2)^(2^(n-1))). a(n+1) = 2*a(n)^2 - 1 for n > 1. - Artur Jasinski, Oct 12 2008
a(n) = A000032(3*2^(n-1))/2. - Ehren Metcalfe, Oct 05 2017
a(n) = A001077(2^(n-1)). - Robert FERREOL, Apr 16 2023
From Peter Bala, Jun 22 2025: (Start)
Product_{n >= 1} (1 + 1/a(n)) = (3/4)*sqrt(5).
Product_{n >= 1} (1 - 1/(2*a(n))) = (6/19)*sqrt(5). See A002812. (End)

Extensions

Edited and extended by Klaus Brockhaus and Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003

A244012 Numerators of rational approximations to sqrt(7) obtained from Newton's method.

Original entry on oeis.org

2, 11, 233, 108497, 23543191457, 1108563727961872518977, 2457827077905448997994482872789298261401217, 12081827889770476116093110581355561229584727594431650162181251776430351279198649072897
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
		

Crossrefs

Cf. A244013 (denominators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=7;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244013 Denominators of rational approximations to sqrt(7) obtained from Newton's method.

Original entry on oeis.org

1, 4, 88, 41008, 8898489952, 418997705236253480128, 928971316248341903257187589777603944778112, 4566501711345281867283814391125123371716411674583075407993026856131137508750543524608
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
		

Crossrefs

Cf. A244012 (numerators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=7;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244014 Numerators of rational approximations to sqrt(6) obtained from Newton's method.

Original entry on oeis.org

2, 5, 49, 4801, 46099201, 4250272665676801, 36129635465198759610694779187201, 2610701117696295981568349760414651575095962187244375364404428801
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
		

Crossrefs

The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=6;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244015 Denominators of rational approximations to sqrt(6) obtained from Newton's method.

Original entry on oeis.org

1, 2, 20, 1960, 18819920, 1735166549767840, 14749861913749949808286047759680, 1065814268211609269094400465471990022332221793124358274759711360
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
		

Crossrefs

Cf. A244014 (numerators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Magma
    m:=9; f:=[n eq 1 select 2 else (Self(n-1)+6/Self(n-1))/2: n in [1..m]]; [Denominator(f[n]): n in [1..m]]; // Vincenzo Librandi, Jan 12 2016
  • Maple
    N:=6;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A083697 a(n) = 2^(2^n - 1) * Fibonacci(2^n).

Original entry on oeis.org

1, 2, 24, 2688, 32342016, 4677882957791232, 97861912906883207538212742365184, 42829440312913272520181533609472356498655100482256687829780267008
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), May 22 2003

Keywords

Comments

A083696(n)/a(n) converges to sqrt(5).
Similar to A081460: a(n) is the denominator of the same mapping f(r)=(1/2)(r+5/r) but with initial value r=1.

Crossrefs

Programs

  • Magma
    [2^(2^n -1)*Fibonacci(2^n): n in [0..8]]; // G. C. Greubel, Jan 14 2022
  • Mathematica
    Table[Sum[Product[2^n -k, {k,0,2*r}]k^r/(2*r+1)!, {r,0,2^n -1}], {n,0,8}]
    Table[2^(2^n -1)*Fibonacci[2^n], {n,0,8}] (* G. C. Greubel, Jan 14 2022 *)
  • Sage
    [2^(2^n -1)*lucas_number1(2^n, 1, -1) for n in (0..8)] # G. C. Greubel, Jan 14 2022
    

Formula

a(n) = 2*a(n-1)*A083696(n-1).
a(n) = A058635(n) * A058891(n).
a(n) = 2^(2^n - 1) * A000045(2^n).
a(n) = Sum_{r=0..(2^n -1)} (5^r/(2*r+1)!)*Product_{k=0..2*r} (2^n - k).

Extensions

The next term is too large to include.
Better description from Ralf Stephan, Aug 29 2004

A319749 a(n) is the numerator of the Heron sequence with h(0)=3.

Original entry on oeis.org

3, 11, 119, 14159, 200477279, 40191139395243839, 1615327685887921300502934267457919, 2609283532796026943395592527806764363779539144932833602430435810559
Offset: 0

Views

Author

Paul Weisenhorn, Sep 27 2018

Keywords

Comments

The denominator of the Heron sequence is in A319750.
The following relationship holds between the numerator of the Heron sequence and the numerator of the continued fraction A041018(n)/A041019(n) convergent to sqrt(13).
n even: a(n)=A041018((5*2^n-5)/3).
n odd: a(n)=A041018((5*2^n-1)/3).
More generally, all numbers c(n)=A078370(n)=(2n+1)^2+4 have the same relationship between the numerator of the Heron sequence and the numerator of the continued fraction convergent to 2n+1.
sqrt(c(n)) has the continued fraction 2n+1; n,1,1,n,4n+2.
hn(n)^2-c(n)*hd(n)^2=4 for n>1.
From Peter Bala, Mar 29 2022: (Start)
Applying Heron's method (sometimes called the Babylonian method) to approximate the square root of the function x^2 + 4, starting with a guess equal to x, produces the sequence of rational functions [x, 2*T(1,(x^2+2)/2)/x, 2*T(2,(x^2+2)/2)/( 2*x*T(1,(x^2+2)/2) ), 2*T(4,(x^2+2)/2)/( 4*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2) ), 2*T(8,(x^2+2)/2)/( 8*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2)*T(4,(x^2+2)/2) ), ...], where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. The present sequence is the case x = 3. Cf. A001566 and A058635 (case x = 1), A081459 and A081460 (essentially the case x = 4). (End)

Examples

			A078370(2)=29.
hn(0)=A041046(0)=5; hn(1)=A041046(3)=27; hn(2)=A041046(5)=727;
hn(3)=A041046(13)=528527.
		

Crossrefs

2*T(2^n,x/2) modulo differences of offset: A001566 (x = 3 and x = 7), A003010 (x = 4), A003487 (x = 5), A003423 (x = 6), A346625 (x = 8), A135927 (x = 10), A228933 (x = 18).

Programs

  • Maple
    hn[0]:=3:  hd[0]:=1:
    for n from 1 to 6 do
    hn[n]:=(hn[n-1]^2+13*hd[n-1]^2)/2:
    hd[n]:=hn[n-1]*hd[n-1]:
       printf("%5d%40d%40d\n", n, hn[n], hd[n]):
    end do:
    #alternative program
    a := n -> if n = 0 then 3 else simplify( 2*ChebyshevT(2^(n-1), 11/2) ) end if:
    seq(a(n), n = 0..7); # Peter Bala, Mar 16 2022
  • Python
    def aupton(nn):
        hn, hd, alst = 3, 1, [3]
        for n in range(nn):
            hn, hd = (hn**2 + 13*hd**2)//2, hn*hd
            alst.append(hn)
        return alst
    print(aupton(7)) # Michael S. Branicky, Mar 16 2022

Formula

h(n) = hn(n)/hd(n); hn(0)=3; hd(0)=1.
hn(n+1) = (hn(n)^2+13*hd(n)^2)/2.
hd(n+1) = hn(n)*hd(n).
A041018(n) = A010122(n)*A041018(n-1) + A041018(n-2).
A041019(n) = A010122(n)*A041019(n-1) + A041019(n-2).
From Peter Bala, Mar 16 2022: (Start)
a(n) = 2*T(2^(n-1),11/2) for n >= 1, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = 2*T(2^n, 3*sqrt(-1)/2) for n >= 2.
a(n) = ((11 + 3*sqrt(13))/2)^(2^(n-1)) + ((11 - 3*sqrt(13))/2)^(2^(n-1)) for n >= 1.
a(n+1) = a(n)^2 - 2 for n >= 1.
a(n) = A057076(2^(n-1)) for n >= 1.
Engel expansion of (1/6)*(13 - 3*sqrt(13)); that is, (1/6)*(13 - 3*sqrt(13)) = 1/3 + 1/(3*11) + 1/(3*11*119) + .... (Define L(n) = (1/2)*(n - sqrt(n^2 - 4)) for n >= 2 and show L(n) = 1/n + L(n^2-2)/n. Iterate this relation with n = 11. See also Liardet and Stambul, Section 4.)
sqrt(13) = 6*Product_{n >= 0} (1 - 1/a(n)).
sqrt(13) = (9/5)*Product_{n >= 0} (1 + 2/a(n)). See A001566. (End)

Extensions

a(6) and a(7) added by Peter Bala, Mar 16 2022
Showing 1-7 of 7 results.