cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A090181 Triangle of Narayana (A001263) with 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0, 1, 55, 825, 4950, 13860
Offset: 0

Views

Author

Philippe Deléham, Jan 19 2004

Keywords

Comments

Number of Dyck n-paths with exactly k peaks. - Peter Luschny, May 10 2014

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,  1;
[3] 0, 1,  3,   1;
[4] 0, 1,  6,   6,    1;
[5] 0, 1, 10,  20,   10,    1;
[6] 0, 1, 15,  50,   50,   15,    1;
[7] 0, 1, 21, 105,  175,  105,   21,   1;
[8] 0, 1, 28, 196,  490,  490,  196,  28,  1;
[9] 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
		

Crossrefs

Mirror image of triangle A131198. A000108 (row sums, Catalan).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n) for x=0,1,2,3,4,5,6,7,8,9. - Philippe Deléham, Aug 10 2006
Sum_{k=0..n} x^(n-k)*T(n,k) = A090192(n+1), A000012(n), A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Oct 21 2006
Sum_{k=0..n} T(n,k)*x^k*(x-1)^(n-k) = A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Oct 20 2007

Programs

  • Magma
    [[(&+[(-1)^(j-k)*Binomial(2*n-j,j)*Binomial(j,k)*Binomial(2*n-2*j,n-j)/(n-j+1): j in [0..n]]): k in [0..n]]: n in [0..10]];
  • Maple
    A090181 := (n,k) -> binomial(n,n-k)*binomial(n-1,n-k)/(n-k+1):
    seq(print( seq(A090181(n,k),k=0..n)),n=0..5); # Peter Luschny, May 10 2014
    egf := 1+int((sqrt(t)*exp((1+t)*x)*BesselI(1,2*sqrt(t)*x))/x,x);
    s := n -> n!*coeff(series(egf,x,n+2),x,n);
    seq(print(seq(coeff(s(n),t,j),j=0..n)),n=0..9); # Peter Luschny, Oct 30 2014
    T := proc(n, k) option remember; if k = n or k = 1 then 1 elif k < 1 then 0 else (2*n/k - 1) * T(n-1, k-1) + T(n-1, k) fi end:
    for n from 0 to 8 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Dec 31 2024
  • Mathematica
    Flatten[Table[Sum[(-1)^(j-k) * Binomial[2n-j,j] * Binomial[j,k] * CatalanNumber[n-j], {j, 0, n}], {n,0,11},{k,0,n}]] (* Indranil Ghosh, Mar 05 2017 *)
    p[0, ] := 1; p[1, x] := x; p[n_, x_] := ((2 n - 1) (1 + x) p[n - 1, x] - (n - 2) (x - 1)^2 p[n - 2, x]) / (n + 1);
    Table[CoefficientList[p[n, x], x], {n, 0, 9}] // TableForm (* Peter Luschny, Apr 26 2022 *)
  • PARI
    c(n) = binomial(2*n,n)/ (n+1);
    tabl(nn) = {for(n=0, nn, for(k=0, n, print1(sum(j=0, n, (-1)^(j-k) * binomial(2*n-j,j) * binomial(j,k) * c(n-j)),", ");); print(););};
    tabl(11); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    from functools import cache
    @cache
    def Trow(n):
        if n == 0: return [1]
        if n == 1: return [0, 1]
        if n == 2: return [0, 1, 1]
        A = Trow(n - 2) + [0, 0]
        B = Trow(n - 1) + [1]
        for k in range(n - 1, 1, -1):
            B[k] = (((B[k] + B[k - 1]) * (2 * n - 1)
                   - (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 2)) // (n + 1))
        return B
    for n in range(10): print(Trow(n)) # Peter Luschny, May 02 2022
    
  • Sage
    def A090181_row(n):
        U = [0]*(n+1)
        for d in DyckWords(n):
            U[d.number_of_peaks()] +=1
        return U
    for n in range(8): A090181_row(n) # Peter Luschny, May 10 2014
    

Formula

Triangle T(n, k), read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938. T(0, 0) = 1, T(n, 0) = 0 for n>0, T(n, k) = C(n-1, k-1)*C(n, k-1)/k for k>0.
Sum_{j>=0} T(n,j)*binomial(j,k) = A060693(n,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*10^k = A143749(n+1). - Philippe Deléham, Oct 14 2008
From Paul Barry, Nov 10 2008: (Start)
Coefficient array of the polynomials P(n,x) = x^n*2F1(-n,-n+1;2;1/x).
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*C(2n-j,j)*C(j,k)*A000108(n-j). (End)
Sum_{k=0..n} T(n,k)*5^k*3^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
Sum_{k=0..n} T(n,k)*(-2)^k = A152681(n); Sum_{k=0..n} T(n,k)*(-1)^k = A105523(n). - Philippe Deléham, Feb 03 2009
Sum_{k=0..n} T(n,k)*2^(n+k) = A156017(n). - Philippe Deléham, Nov 27 2011
T(n, k) = C(n,n-k)*C(n-1,n-k)/(n-k+1). - Peter Luschny, May 10 2014
E.g.f.: 1+Integral((sqrt(t)*exp((1+t)*x)*BesselI(1,2*sqrt(t)*x))/x dx). - Peter Luschny, Oct 30 2014
G.f.: (1+x-x*y-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x). - Alois P. Heinz, Nov 28 2021, edited by Ron L.J. van den Burg, Dec 19 2021
T(n, k) = [x^k] (((2*n - 1)*(1 + x)*p(n-1, x) - (n - 2)*(x - 1)^2*p(n-2, x))/(n + 1)) with p(0, x) = 1 and p(1, x) = x. - Peter Luschny, Apr 26 2022
Recursion based on rows (see the Python program):
T(n, k) = (((B(k) + B(k-1))*(2*n - 1) - (A(k) - 2*A(k-1) + A(k-2))*(n-2))/(n+1)), where A(k) = T(n-2, k) and B(k) = T(n-1, k), for n >= 3. # Peter Luschny, May 02 2022

A060693 Triangle (0 <= k <= n) read by rows: T(n, k) is the number of Schröder paths from (0,0) to (2n,0) having k peaks.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 14, 35, 30, 10, 1, 42, 126, 140, 70, 15, 1, 132, 462, 630, 420, 140, 21, 1, 429, 1716, 2772, 2310, 1050, 252, 28, 1, 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1, 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1, 16796
Offset: 0

Views

Author

F. Chapoton, Apr 20 2001

Keywords

Comments

The rows sum to A006318 (Schroeder numbers), the left column is A000108 (Catalan numbers); the next-to-left column is A001700, the alternating sum in each row but the first is 0.
T(n,k) is the number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k peaks. Example: T(2,1)=3 because we have UU*DD, U*DH and HU*D, the peaks being shown by *. E.g., T(n,k) = binomial(n,k)*binomial(2n-k,n-1)/n for n>0. - Emeric Deutsch, Dec 06 2003
A090181*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 14 2008
T(n,k) is also the number of rooted plane trees with maximal degree 3 and k vertices of degree 2 (a node may have at most 2 children, and there are exactly k nodes with 1 child). Equivalently, T(n,k) is the number of syntactically different expressions that can be formed that use a unary operation k times, a binary operation n-k times, and nothing else (sequence of operands is fixed). - Lars Hellstrom (Lars.Hellstrom(AT)residenset.net), Dec 08 2009

Examples

			Triangle begins:
00: [    1]
01: [    1,     1]
02: [    2,     3,      1]
03: [    5,    10,      6,      1]
04: [   14,    35,     30,     10,      1]
05: [   42,   126,    140,     70,     15,      1]
06: [  132,   462,    630,    420,    140,     21,     1]
07: [  429,  1716,   2772,   2310,   1050,    252,    28,    1]
08: [ 1430,  6435,  12012,  12012,   6930,   2310,   420,   36,   1]
09: [ 4862, 24310,  51480,  60060,  42042,  18018,  4620,  660,  45,  1]
10: [16796, 92378, 218790, 291720, 240240, 126126, 42042, 8580, 990, 55, 1]
...
		

Crossrefs

Triangle in A088617 transposed.
T(2n,n) gives A007004.

Programs

  • Maple
    A060693 := (n,k) -> binomial(n,k)*binomial(2*n-k,n)/(n-k+1); # Peter Luschny, May 17 2011
  • Mathematica
    t[n_, k_] := Binomial[n, k]*Binomial[2 n - k, n]/(n - k + 1); Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, May 30 2011 *)
  • PARI
    T(n, k) = binomial(n, k)*binomial(2*n - k, n)/(n - k + 1);
    for(n=0, 10, for(k=0, n, print1(T(n, k),", ")); print); \\ Indranil Ghosh, Jul 28 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return binomial(n, k) * binomial(2 * n - k, n) / (n - k + 1)
    for n in range(11): print([T(n, k) for k in range(n + 1)])  # Indranil Ghosh, Jul 28 2017

Formula

Triangle T(n, k) (0 <= k <= n) read by rows; given by [1, 1, 1, 1, 1, ...] DELTA [1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 12 2003
If C_n(x) is the g.f. of row n of the Narayana numbers (A001263), C_n(x) = Sum_{k=1..n} binomial(n,k-1)*(binomial(n-1,k-1)/k) * x^k and T_n(x) is the g.f. of row n of T(n,k), then T_n(x) = C_n(x+1), or T(n,k) = [x^n]Sum_{k=1..n}(A001263(n,k)*(x+1)^k). - Mitch Harris, Jan 16 2007, Jan 31 2007
G.f.: (1 - t*y - sqrt((1-y*t)^2 - 4*y)) / 2.
T(n, k) = binomial(2n-k, n)*binomial(n, k)/(n-k+1). - Philippe Deléham, Dec 07 2003
A060693(n, k) = binomial(2*n-k, k)*A000108(n-k); A000108: Catalan numbers. - Philippe Deléham, Dec 30 2003
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n), for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Apr 01 2007
T(n,k) = Sum_{j>=0} A090181(n,j)*binomial(j,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Oct 18 2007
From Paul Barry, Jan 29 2009: (Start)
G.f.: 1/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-.... (continued fraction);
G.f.: 1/(1-(x+xy)/(1-x/(1-(x+xy)/(1-x/(1-(x+xy)/(1-.... (continued fraction). (End)
T(n,k) = [k<=n]*(Sum_{j=0..n} binomial(n,j)^2*binomial(j,k))/(n-k+1). - Paul Barry, May 28 2009
T(n,k) = A104684(n,k)/(n-k+1). - Peter Luschny, May 17 2011
From Tom Copeland, Sep 21 2011: (Start)
With F(x,t) = (1-(2+t)*x-sqrt(1-2*(2+t)*x+(t*x)^2))/(2*x) an o.g.f. (nulling the n=0 term) in x for the A060693 polynomials in t,
G(x,t) = x/(1+t+(2+t)*x+x^2) is the compositional inverse in x.
Consequently, with H(x,t) = 1/(dG(x,t)/dx) = (1+t+(2+t)*x+x^2)^2 / (1+t-x^2), the n-th A060693 polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n) x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/d) u, evaluated at u = 0.
Also, dF(x,t)/dx = H(F(x,t),t). (End)
See my 2008 formulas in A033282 to relate this entry to A088617, A001263, A086810, and other matrices. - Tom Copeland, Jan 22 2016
Rows of this entry are non-vanishing antidiagonals of A097610. See p. 14 of Agapito et al. for a bivariate generating function and its inverse. - Tom Copeland, Feb 03 2016
From Werner Schulte, Jan 09 2017: (Start)
T(n,k) = A126216(n,k-1) + A126216(n,k) for 0 < k < n;
Sum_{k=0..n} (-1)^k*(1+x*(n-k))*T(n,k) = x + (1-x)*A000007(n).
(End)
Conjecture: Sum_{k=0..n} (-1)^k*T(n,k)*(n+1-k)^2 = 1+n+n^2. - Werner Schulte, Jan 11 2017

Extensions

More terms from Vladeta Jovovic, Apr 21 2001
New description from Philippe Deléham, Aug 12 2003
New name using a comment by Emeric Deutsch from Peter Luschny, Jul 26 2017

A131198 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,1,0,1,0,1,0,...] DELTA [0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Oct 20 2007

Keywords

Comments

Mirror image of triangle A090181, another version of triangle of Narayana (A001263).
Equals A133336*A130595 as infinite lower triangular matrices. - Philippe Deléham, Oct 23 2007

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,   0;
  1,  3,   1,   0;
  1,  6,   6,   1,   0;
  1, 10,  20,  10,   1,   0;
  1, 15,  50,  50,  15,   1,  0;
  1, 21, 105, 175, 105,  21,  1, 0;
  1, 28, 196, 490, 490, 196, 28, 1, 0; ...
		

Crossrefs

Programs

  • Magma
    [[n le 0 select 1 else (n-k)*Binomial(n,k)^2/(n*(k+1)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
  • Maple
    T := (n,k) -> `if`(n=0, 0^n, binomial(n,k)^2*(n-k)/(n*(k+1)));
    seq(print(seq(T(n,k), k=0..n)), n=0..5); # Peter Luschny, Jun 08 2014
    R := n -> simplify(hypergeom([1 - n, -n], [2], x)):
    Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
    seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
  • Mathematica
    Table[If[n == 0, 1, (n-k)*Binomial[n,k]^2/(n*(k+1))], {n,0,10}, {k,0,n}] //Flatten (* G. C. Greubel, Feb 06 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(if(n==0,1, (n-k)*binomial(n,k)^2/(n* (k+1))), ", "))) \\ G. C. Greubel, Feb 06 2018
    

Formula

Sum_{k=0..n} T(n,k)*x^k = A000012(n), A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n), for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Oct 23 2007
Sum_{k=0..floor(n/2)} T(n-k,k) = A004148(n). - Philippe Deléham, Nov 06 2007
T(2*n,n) = A125558(n). - Philippe Deléham, Nov 16 2011
T(n, k) = [x^k] hypergeom([1 - n, -n], [2], x). - Peter Luschny, Apr 26 2022

A172455 The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
		

Crossrefs

Cf. A000079 S(1,1,-1), A000108 S(0,0,1), A000142 S(1,-1,0), A000244 S(2,1,-2), A000351 S(4,1,-4), A000400 S(5,1,-5), A000420 S(6,1,-6), A000698 S(2,-3,1), A001710 S(1,1,0), A001715 S(1,2,0), A001720 S(1,3,0), A001725 S(1,4,0), A001730 S(1,5,0), A003319 S(1,-2,1), A005411 S(2,-4,1), A005412 S(2,-2,1), A006012 S(-1,2,2), A006318 S(0,1,1), A047891 S(0,2,1), A049388 S(1,6,0), A051604 S(3,1,0), A051605 S(3,2,0), A051606 S(3,3,0), A051607 S(3,4,0), A051608 S(3,5,0), A051609 S(3,6,0), A051617 S(4,1,0), A051618 S(4,2,0), A051619 S(4,3,0), A051620 S(4,4,0), A051621 S(4,5,0), A051622 S(4,6,0), A051687 S(5,1,0), A051688 S(5,2,0), A051689 S(5,3,0), A051690 S(5,4,0), A051691 S(5,5,0), A053100 S(6,1,0), A053101 S(6,2,0), A053102 S(6,3,0), A053103 S(6,4,0), A053104 S(7,1,0), A053105 S(7,2,0), A053106 S(7,3,0), A062980 S(6,-8,1), A082298 S(0,3,1), A082301 S(0,4,1), A082302 S(0,5,1), A082305 S(0,6,1), A082366 S(0,7,1), A082367 S(0,8,1), A105523 S(0,-2,1), A107716 S(3,-4,1), A111529 S(1,-3,2), A111530 S(1,-4,3), A111531 S(1,-5,4), A111532 S(1,-6,5), A111533 S(1,-7,6), A111546 S(1,0,1), A111556 S(1,1,1), A143749 S(0,10,1), A146559 S(1,1,-2), A167872 S(2,-3,2), A172450 S(2,0,-1), A172485 S(-1,-2,3), A177354 S(1,2,1), A292186 S(4,-6,1), A292187 S(3, -5, 1).

Programs

  • Mathematica
    a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • PARI
    S(v1, v2, v3, N=16) = {
      my(a = vector(N)); a[1] = 1;
      for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
    };
    S(6,-4,-1)
    \\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
    \\ Gheorghe Coserea, May 12 2017

Formula

a(n) = (6*n - 4) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 7*x / (1 - 5*x / (1 - 13*x / (1 - 11*x / (1 - 19*x / (1 - 17*x / ... )))))). - Michael Somos, Jan 03 2013
a(n) = 3/(2*Pi^2)*int((4*x)^((3*n-1)/2)/(Ai'(x)^2+Bi'(x)^2), x=0..inf), where Ai'(x), Bi'(x) are the derivatives of the Airy functions. [Vladimir Reshetnikov, Sep 24 2013]
a(n) ~ 6^n * (n-1)! / (2*Pi) [Martin + Kearney, 2011, p.16]. - Vaclav Kotesovec, Jan 19 2015
6*x^2*y' = y^2 - (2*x-1)*y - x, where y(x) = Sum_{n>=1} a(n)*x^n. - Gheorghe Coserea, May 12 2017
G.f.: x/(1 - 2*x - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... Cf. A062980. - Peter Bala, May 21 2017

A082306 Expansion of e.g.f. (1+x)*exp(2*x)*cosh(x).

Original entry on oeis.org

1, 3, 9, 29, 97, 327, 1097, 3649, 12033, 39371, 127945, 413349, 1328609, 4251535, 13551753, 43046729, 136314625, 430467219, 1355971721, 4261625389, 13366006881, 41841412823, 130754415049, 407953774929, 1270932914177
Offset: 0

Views

Author

Paul Barry, Apr 09 2003

Keywords

Comments

Binomial transform of A082305 a(n)=(A006234(n)+A000027(n))/2

Crossrefs

Cf. A082307.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(2*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1 + x)*Exp[2*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Sep 16 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace((1+x)*exp(2*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
    

Formula

a(n) = (n + 1 + 3^(n-1)*(n + 3))/2.
G.f.: (1/(1-x)^2 + (1-2*x)/(1-3*x)^2)/2.
E.g.f.: (1+x)*exp(2*x)*cosh(x).

A082309 Expansion of e.g.f.: (1+x)*exp(5*x)*cosh(x).

Original entry on oeis.org

1, 6, 36, 218, 1336, 8280, 51776, 325792, 2057856, 13023104, 82456576, 521826816, 3298727936, 20822038528, 131210919936, 825373859840, 5182772248576, 32487861092352, 203308891897856, 1270289732337664, 7924975155019776
Offset: 0

Views

Author

Paul Barry, Apr 09 2003

Keywords

Comments

Binomial transform of A082307.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(5*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
  • Mathematica
    With[{nn=30},CoefficientList[Series[(1+x)Exp[5x]Cosh[x],{x,0,nn}],x]Range[0,nn]!] (* or *) LinearRecurrence[{20,-148,480,-576},{1,6,36,218},30] (* Harvey P. Dale, Aug 27 2012 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace((1+x)*exp(5*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
    

Formula

a(n) = (A081106(n) + A079028(n))/2.
a(n) = ((n+4)*4^(n-1) + (n+6)*6^(n-1))/2.
G.f.: ((1-5*x)/(1-6*x)^2 + (1-3*x)/(1-4*x)^2)/2.
From Harvey P. Dale, Aug 27 2012: (Start)
E.g.f.: (1+x)*exp(5*x)*cosh(x).
a(n) = 20*a(n-1) - 148*a(n-2) + 480*a(n-3) - 576*a(n-4), n>3. (End)

Extensions

Definition clarified by Harvey P. Dale, Aug 27 2012

A247507 Square array read by ascending antidiagonals, n>=0, k>=0. Row n is the expansion of (1-n*x-sqrt(n^2*x^2-2*n*x-4*x+1))/(2*x).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 22, 14, 1, 5, 20, 57, 90, 42, 1, 6, 30, 116, 300, 394, 132, 1, 7, 42, 205, 740, 1686, 1806, 429, 1, 8, 56, 330, 1530, 5028, 9912, 8558, 1430, 1, 9, 72, 497, 2814, 12130, 35700, 60213, 41586, 4862
Offset: 0

Views

Author

Peter Luschny, Nov 17 2014

Keywords

Examples

			   [0][1] [2]  [3]    [4]     [5]      [6]       [7]
[0] 1, 1,  2,   5,    14,     42,     132,      429,.. A000108
[1] 1, 2,  6,  22,    90,    394,    1806,     8558,.. A006318
[2] 1, 3, 12,  57,   300,   1686,    9912,    60213,.. A047891
[3] 1, 4, 20, 116,   740,   5028,   35700,   261780,.. A082298
[4] 1, 5, 30, 205,  1530,  12130,  100380,   857405,.. A082301
[5] 1, 6, 42, 330,  2814,  25422,  239442,  2326434,.. A082302
[6] 1, 7, 56, 497,  4760,  48174,  507696,  5516133,.. A082305
[7] 1, 8, 72, 712,  7560,  84616,  985032, 11814728,.. A082366
[8] 1, 9, 90, 981, 11430, 140058, 1782900, 23369805,.. A082367
		

Crossrefs

Cf. A243631.
Main diagonal gives A302286.

Programs

  • Maple
    gf := n -> (1-n*x-sqrt(n^2*x^2-2*n*x-4*x+1))/(2*x):
    for n from 0 to 10 do lprint(PolynomialTools:-CoefficientList( convert(series(gf(n),x,8),polynom),x)) od;

Formula

G.f. of row n: 1/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Apr 06 2018

Extensions

Offset changed to 0 by Alois P. Heinz, May 28 2015
Showing 1-7 of 7 results.