A167198 Fractal sequence of the interspersion A083047.
1, 1, 2, 1, 2, 3, 1, 4, 2, 3, 5, 1, 4, 6, 2, 7, 3, 5, 8, 1, 9, 4, 6, 10, 2, 7, 11, 3, 12, 5, 8, 13, 1, 9, 14, 4, 15, 6, 10, 16, 2, 17, 7, 11, 18, 3, 12, 19, 5, 20, 8, 13, 21, 1, 22, 9, 14, 23, 4, 15, 24, 6, 25, 10, 16, 26, 2, 17, 27, 7, 28, 11, 18, 29, 3, 30, 12, 19, 31, 5, 20, 32, 8, 33, 13
Offset: 1
Keywords
Examples
To produce row 5, first write row 4: 2,3,1, then place 4 right before 2, and then place 5 right before 1, getting 4,2,3,5,1.
References
- Clark Kimberling, Stolarsky interspersions, Ars Combinatoria 39 (1995), 129-138.
Links
- Clark Kimberling, The first column of an interspersion, The Fibonacci Quarterly 32 (1994), 301-315.
Formula
Following is a construction that avoids reference to A083047.
Write initial rows:
Row 1: .... 1
Row 2: .... 1
Row 3: .... 2..1
Row 4: .... 2..3..1
For n>=4, to form row n+1, let k be the least positive integer not yet used; write row n, and right before the first number that is also in row n-1, place k; right before the next number that is also in row n-1, place k+1, and continue. A167198 is the concatenation of the rows. (If "before" is replaced by "after", the resulting fractal sequence is A003603, and the associated interspersion is the Wythoff array, A035513.)
Comments