Original entry on oeis.org
1, 4, 7, 11, 14, 18, 21, 24, 28, 31, 35, 38, 41, 45, 48, 52, 55, 59, 62, 65, 69, 72, 76, 79, 82, 86, 89, 93, 96, 100, 103, 106, 110, 113, 117, 120, 123, 127, 130, 134, 137, 140, 144, 147, 151, 154, 158, 161, 164, 168, 171, 175, 178, 181, 185, 188, 192, 195, 199, 202
Offset: 0
Original entry on oeis.org
1, 6, 15, 33, 60, 107, 176, 283, 463, 732, 1156, 1773, 2702, 4170, 6333, 9611, 14365, 21842, 32281, 48041, 71690, 106136, 158196, 232380, 340846, 504318, 740949, 1089909, 1590748, 2348540, 3411262, 4978297, 7278002, 10600284, 15494846
Offset: 0
A083053
Antidiagonal sums of table A083050.
Original entry on oeis.org
1, 6, 16, 35, 66, 114, 185, 290, 443, 661, 976, 1425, 2064, 2972, 4259, 6083, 8667, 12327, 17506, 24834, 35203, 49869, 70615, 99959, 141462, 200159, 283173, 400577, 566616, 801435, 1133522, 1603168, 2267350, 3206653, 4535033, 6413648, 9070416
Offset: 0
A048739
Expansion of 1/((1 - x)*(1 - 2*x - x^2)).
Original entry on oeis.org
1, 3, 8, 20, 49, 119, 288, 696, 1681, 4059, 9800, 23660, 57121, 137903, 332928, 803760, 1940449, 4684659, 11309768, 27304196, 65918161, 159140519, 384199200, 927538920, 2239277041, 5406093003, 13051463048, 31509019100, 76069501249
Offset: 0
- Allombert, Bill, Nicolas Brisebarre, and Alain Lasjaunias. "On a two-valued sequence and related continued fractions in power series fields." The Ramanujan Journal 45.3 (2018): 859-871. See Theorem 3, d_{4n+3}.
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Bicknell, A Primer on the Pell Sequence and related sequences, Fibonacci Quarterly, Vol. 13, No. 4, 1975, pp. 345-349.
- M. Bicknell-Johnson and G. E. Bergum, The Generalized Fibonacci Numbers {C(n)}, C(n)=C(n-1)+C(n-2)+K, Applications of Fibonacci Numbers, 1986, pp. 193-205.
- B. Bradie, Extensions and Refinements of some properties of sums involving Pell Numbers, Miss. J. Math. Sci 22 (1) (2010) 37-43
- M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017.
- Jimmy Devillet, On the single-peakedness property, International summer school "Preferences, decisions and games" (Sorbonne Université, Paris, 2019).
- I. M. Gessel, Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1065
- Yun-Tak Oh, Hosho Katsura, Hyun-Yong Lee, Jung Hoon Han, Proposal of a spin-one chain model with competing dimer and trimer interactions, arXiv:1709.01344 [cond-mat.str-el], 2017.
- Ahmet Öteleş, On the sum of Pell and Jacobsthal numbers by the determinants of Hessenberg matrices, AIP Conference Proceedings 1863, 310003 (2017).
- Wipawee Tangjai, A Non-standard Ternary Representation of Integers, Thai J. Math (2020) Special Issue: Annual Meeting in Mathematics 2019, 269-283.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1).
-
a:=n->sum(fibonacci(i,2), i=0..n): seq(a(n), n=1..29); # Zerinvary Lajos, Mar 20 2008
-
Join[{a=1,b=3},Table[c=2*b+a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
CoefficientList[Series[1/(1-3x+x^2+x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,-1,-1},{1,3,8},30] (* Harvey P. Dale, Jun 13 2011 *)
-
a(n)=local(w=quadgen(8));-1/2+(3/4+1/2*w)*(1+w)^n+(3/4-1/2*w)*(1-w)^n
-
vector(100, n, n--; floor((1+sqrt(2))^(n+2)/4)) \\ Altug Alkan, Oct 07 2015
-
Vec(1/((1-x)*(1-2*x-x^2)) + O(x^40)) \\ Michel Marcus, May 06 2017
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 11 2002
A083044
Square table read by antidiagonals forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), where x=3/2, n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 4, 3, 6, 7, 5, 9, 11, 10, 8, 14, 17, 15, 13, 12, 21, 26, 23, 20, 16, 18, 32, 39, 35, 30, 24, 19, 27, 48, 59, 53, 45, 36, 29, 22, 41, 72, 89, 80, 68, 54, 44, 33, 25, 62, 108, 134, 120, 102, 81, 66, 50, 38, 28, 93, 162, 201, 180, 153, 122, 99, 75, 57, 42, 31, 140, 243
Offset: 0
Table begins:
1 2 3 5 8 12 18 27 41 62 93 140 ...
4 6 9 14 21 32 48 72 108 162 243 365 ...
7 11 17 26 39 59 89 134 201 302 453 680 ...
10 15 23 35 53 80 120 180 270 405 608 912 ...
13 20 30 45 68 102 153 230 345 518 777 1166 ...
16 24 36 54 81 122 183 275 413 620 930 1395 ...
19 29 44 66 99 149 224 336 504 756 1134 1701 ...
22 33 50 75 113 170 255 383 575 863 1295 1943 ...
25 38 57 86 129 194 291 437 656 984 1476 2214 ...
28 42 63 95 143 215 323 485 728 1092 1638 2457 ...
31 47 71 107 161 242 363 545 818 1227 1841 2762 ...
Row in which a number occurs:
A163491.
Column in which a number occurs:
A087088.
A083047
Square table read by antidiagonals forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), where x = (sqrt(5)+1)/2, n>=0, k>=0.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 8, 12, 15, 17, 13, 11, 20, 25, 28, 22, 18, 14, 33, 41, 46, 36, 30, 23, 16, 54, 67, 75, 59, 49, 38, 26, 19, 88, 109, 122, 96, 80, 62, 43, 31, 21, 143, 177, 198, 156, 130, 101, 70, 51, 34, 24, 232, 287, 321, 253, 211, 164, 114, 83, 56, 39, 27, 376
Offset: 0
Table begins:
1 2 4 7 12 20 33 54 88 143 232 376 ...
3 5 9 15 25 41 67 109 177 287 465 753 ...
6 10 17 28 46 75 122 198 321 520 842 1363 ...
8 13 22 36 59 96 156 253 410 664 1075 1740 ...
11 18 30 49 80 130 211 342 554 897 1452 2350 ...
14 23 38 62 101 164 266 431 698 1130 1829 2960 ...
16 26 43 70 114 185 300 486 787 1274 2062 3337 ...
19 31 51 83 135 219 355 575 931 1507 2439 3947 ...
21 34 56 91 148 240 389 630 1020 1651 2672 4324 ...
24 39 64 104 169 274 444 719 1164 1884 3049 4934 ...
27 44 72 117 190 308 499 808 1308 2117 3426 5544 ...
-
t[n_, 0] = Floor[n*GoldenRatio/(GoldenRatio - 1) + 1];
t[n_, k_] := t[n, k] = Ceiling[GoldenRatio*t[n, k-1]];
Flatten[Table[t[k-1, n-k ], {n, 12}, {k, n}] ][[;; 67]]
(* Jean-François Alcover, Jul 13 2011 *)
A083087
Square table read by antidiagonals which forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), for n>=0, k>=0, where x = 1 + sqrt(2).
Original entry on oeis.org
1, 3, 2, 8, 5, 4, 20, 13, 10, 6, 49, 32, 25, 15, 7, 119, 78, 61, 37, 17, 9, 288, 189, 148, 90, 42, 22, 11, 696, 457, 358, 218, 102, 54, 27, 12, 1681, 1104, 865, 527, 247, 131, 66, 29, 14, 4059, 2666, 2089, 1273, 597, 317, 160, 71, 34, 16, 9800, 6437, 5044, 3074
Offset: 0
Table begins:
1 3 8 20 49 119 288 ...
2 5 13 32 78 189 457 ...
4 10 25 61 148 358 865 ...
6 15 37 90 218 527 1273 ...
7 17 42 102 247 597 1442 ...
9 22 54 131 317 766 1850 ...
11 27 66 160 387 935 2258 ...
12 29 71 172 416 1005 2427 ...
14 34 83 201 486 1174 2835 ...
16 39 95 230 556 1343 3243 ...
18 44 107 259 626 1512 3651 ...
19 46 112 271 655 1582 3820 ...
21 51 124 300 725 1751 4228 ...
23 56 136 329 795 1920 4636 ...
24 58 141 341 824 1990 4805 ...
-
z:=10; x:=1+Sqrt(2); S:=[]; for n in [0..z] do for k in [0..n] do if n-k eq 0 then Append(~S, Floor(n*x/(x-1))+1); else Append(~S, Ceiling(x*S[k+1+(n*(n-1) div 2)])); end if; end for; end for; S; // Klaus Brockhaus, Jan 04 2011
-
(See Comments.)
Original entry on oeis.org
1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 65, 67, 69, 70, 72, 74, 76, 77, 79, 81, 82, 84, 86, 88, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 106, 108, 110, 111, 113, 115
Offset: 0
-
z:=70; x:=1+Sqrt(2); [ Floor(n*x/(x-1))+1: n in [0..z] ]; // Klaus Brockhaus, Jan 04 2011
-
f[n_] := Floor[n/Sqrt@2 + n + 1]; Array[f, 68, 0]
This entry formerly contained an erroneous comment, which was deleted by
N. J. A. Sloane, Jan 30 2008
A367832
Array T(n, k) read by ascending antidiagonals is a dispersion based on A367467. Column 1 lists the numbers which cannot be represented by A367467(m) + m. For k >= 1, T(n, k+1) = A367467(T(n, k)) + T(n, k).
Original entry on oeis.org
1, 4, 2, 7, 6, 3, 11, 9, 10, 5, 14, 12, 15, 17, 8, 18, 16, 20, 25, 29, 13, 21, 19, 27, 34, 42, 49, 22, 24, 23, 32, 46, 58, 71, 83, 37, 28, 26, 39, 54, 78, 99, 121, 141, 63, 31, 30, 44, 66, 92, 133, 169, 206, 240, 107, 35, 33, 51, 75, 112, 157, 227, 288, 351, 409, 182, 38, 36, 56, 87, 128, 191, 268
Offset: 1
Array T(n, k) begins:
1, 2, 3, 5, 8, 13, 22, 37, 63, 107, ...
4, 6, 10, 17, 29, 49, 83, 141, 240, 409, ...
7, 9, 15, 25, 42, 71, 121, 206, 351, 599, ...
11, 12, 20, 34, 56, 99, 169, 288, 491, 839, ...
14, 16, 27, 46, 78, 133, 227, 387, 660, 1126, ...
18, 19, 32, 54, 92, 157, 268, 457, 780, 1331, ...
21, 23, 39, 66, 112, 191, 326, 556, 949, 1620, ...
...
- Clark Kimberling, Fractal sequences and interspersions, Ars Combinatoria 45 (1997) 157-168.
Cf.
A083050 (a closely related dispersion).
Original entry on oeis.org
1, 6, 17, 35, 68, 122, 224, 383, 656, 1092, 1841, 2978, 4859, 7835, 12776, 20291, 32664, 51422, 82485, 129720, 204821, 319482, 506060, 789872, 1237733, 1927494, 3024318, 4687259, 7274921, 11271293, 17578760, 27133793, 42125475, 64909160
Offset: 0
Showing 1-10 of 15 results.
Comments