cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A083051 First column of table A083050.

Original entry on oeis.org

1, 4, 7, 11, 14, 18, 21, 24, 28, 31, 35, 38, 41, 45, 48, 52, 55, 59, 62, 65, 69, 72, 76, 79, 82, 86, 89, 93, 96, 100, 103, 106, 110, 113, 117, 120, 123, 127, 130, 134, 137, 140, 144, 147, 151, 154, 158, 161, 164, 168, 171, 175, 178, 181, 185, 188, 192, 195, 199, 202
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2003

Keywords

Crossrefs

Formula

a(n)=floor(n*x/(x-1))+1, x=sqrt(2).

A083052 Main diagonal of table A083050.

Original entry on oeis.org

1, 6, 15, 33, 60, 107, 176, 283, 463, 732, 1156, 1773, 2702, 4170, 6333, 9611, 14365, 21842, 32281, 48041, 71690, 106136, 158196, 232380, 340846, 504318, 740949, 1089909, 1590748, 2348540, 3411262, 4978297, 7278002, 10600284, 15494846
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2003

Keywords

Crossrefs

Formula

a(n) = T(n, n), where T(n, 0) = floor(n*x/(x-1)) + 1, T(n, k+1) = ceiling(x*T(n, k)), for n >= 0, k >= 0, with x=sqrt(2).

A083053 Antidiagonal sums of table A083050.

Original entry on oeis.org

1, 6, 16, 35, 66, 114, 185, 290, 443, 661, 976, 1425, 2064, 2972, 4259, 6083, 8667, 12327, 17506, 24834, 35203, 49869, 70615, 99959, 141462, 200159, 283173, 400577, 566616, 801435, 1133522, 1603168, 2267350, 3206653, 4535033, 6413648, 9070416
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2003

Keywords

Crossrefs

Formula

a(n) = Sum_{k=0..n} T(k,n-k), where T(n,0) = floor(n*x/(x-1)) + 1, T(n,k+1) = ceiling(x*T(n,k)), for n>=0, k>=0, with x = sqrt(2).

A048739 Expansion of 1/((1 - x)*(1 - 2*x - x^2)).

Original entry on oeis.org

1, 3, 8, 20, 49, 119, 288, 696, 1681, 4059, 9800, 23660, 57121, 137903, 332928, 803760, 1940449, 4684659, 11309768, 27304196, 65918161, 159140519, 384199200, 927538920, 2239277041, 5406093003, 13051463048, 31509019100, 76069501249
Offset: 0

Views

Author

Keywords

Comments

Partial sums of Pell numbers A000129.
W(n){1,3;2,-1,1} = Sum_{i=1..n} W(i){1,2;2,-1,0}, where W(n){a,b; p,q,r} implies x(n) = p*x(n-1) - q*x(n-2) + r; x(0)=a, x(1)=b.
Number of 2 X (n+1) binary arrays with path of adjacent 1's from upper left to lower right corner. - R. H. Hardin, Mar 16 2002
Binomial transform of A029744. - Paul Barry, Apr 23 2004
Number of (s(0), s(1), ..., s(n+2)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n+2, s(0) = 1, s(n+2) = 3. - Herbert Kociemba, Jun 16 2004
Equals row sums of triangle A153346. - Gary W. Adamson, Dec 24 2008
Equals the sum of the terms of the antidiagonals of A142978. - J. M. Bergot, Nov 13 2012
a(p-2) == 0 mod p where p is an odd prime, see A270342. - Altug Alkan, Mar 15 2016
Also, the lexicographically earliest sequence of positive integers such that for n > 3, {sqrt(2)*a(n)} is located strictly between {sqrt(2)*a(n-1)} and {sqrt(2)*a(n-2)} where {} denotes the fractional part. - Ivan Neretin, May 02 2017
a(n+1) is the number of weak orderings on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1 < ... < n. - J. Devillet, Oct 06 2017

References

  • Allombert, Bill, Nicolas Brisebarre, and Alain Lasjaunias. "On a two-valued sequence and related continued fractions in power series fields." The Ramanujan Journal 45.3 (2018): 859-871. See Theorem 3, d_{4n+3}.

Crossrefs

First row of table A083087.
With a different offset, a(4n)=A008843(n), a(4n-2)=8*A001110(n), a(2n-1)=A001652(n).

Programs

  • Maple
    a:=n->sum(fibonacci(i,2), i=0..n): seq(a(n), n=1..29); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    Join[{a=1,b=3},Table[c=2*b+a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
    CoefficientList[Series[1/(1-3x+x^2+x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,-1,-1},{1,3,8},30] (* Harvey P. Dale, Jun 13 2011 *)
  • PARI
    a(n)=local(w=quadgen(8));-1/2+(3/4+1/2*w)*(1+w)^n+(3/4-1/2*w)*(1-w)^n
    
  • PARI
    vector(100, n, n--; floor((1+sqrt(2))^(n+2)/4)) \\ Altug Alkan, Oct 07 2015
    
  • PARI
    Vec(1/((1-x)*(1-2*x-x^2)) + O(x^40)) \\ Michel Marcus, May 06 2017

Formula

a(n) = 2*a(n-1) + a(n-2) + 1 with n > 1, a(0)=1, a(1)=3.
a(n) = ((2 + (3*sqrt(2))/2)*(1 + sqrt(2))^n - (2 - (3*sqrt(2))/2)*(1 - sqrt(2))^n )/(2*sqrt(2)) - 1/2.
a(0)=1, a(n+1) = ceiling(x*a(n)) for n > 0, where x = 1+sqrt(2). - Paul D. Hanna, Apr 22 2003
a(n) = 3*a(n-1) - a(n-2) - a(n-3). With two leading zeros, e.g.f. is exp(x)(cosh(sqrt(2)x)-1)/2. a(n) = Sum_{k=0..floor((n+2)/2)} binomial(n+2, 2k+2)2^k. - Paul Barry, Aug 16 2003
-a(-3-n) = A077921(n). - N. J. A. Sloane, Sep 13 2003
E.g.f.: exp(x)(cosh(x/sqrt(2)) + sqrt(2)sinh(x/sqrt(2)))^2. - N. J. A. Sloane, Sep 13 2003
a(n) = floor((1+sqrt(2))^(n+2)/4). - Bruno Berselli, Feb 06 2013
a(n) = (((1-sqrt(2))^(n+2) + (1+sqrt(2))^(n+2) - 2) / 4). - Altug Alkan, Mar 16 2016
2*a(n) = A001333(n+2)-1. - R. J. Mathar, Oct 11 2017
a(n) = Sum_{k=0..n} binomial(n+1,k+1)*2^floor(k/2). - Tony Foster III, Oct 12 2017

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 11 2002

A083044 Square table read by antidiagonals forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), where x=3/2, n >= 0, k >= 0.

Original entry on oeis.org

1, 2, 4, 3, 6, 7, 5, 9, 11, 10, 8, 14, 17, 15, 13, 12, 21, 26, 23, 20, 16, 18, 32, 39, 35, 30, 24, 19, 27, 48, 59, 53, 45, 36, 29, 22, 41, 72, 89, 80, 68, 54, 44, 33, 25, 62, 108, 134, 120, 102, 81, 66, 50, 38, 28, 93, 162, 201, 180, 153, 122, 99, 75, 57, 42, 31, 140, 243
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2003

Keywords

Comments

First row is A061419, first column is T(n,0) = A016777(n) = 3n+1 (namely the numbers not of the form ceiling(3*k/2) for any natural number k, in increasing order), main diagonal is A083045, antidiagonal sums give A083046. [further detail on first column added by Glen Whitney, Aug 03 2018]
A083044 is the dispersion of the sequence A007494 of positive integers congruent to (0 or 2) mod 3; see A191655. - Clark Kimberling, Jun 10 2011
If T(n+1,k) - T(n,k) = 2m, then T(n+1,k+1) - T(n,k+1) = ceiling(3T(n+1,k)/2) - ceiling(3T(n,k)/2) = ceiling(3T(n,k)/2 + 3m) - ceiling(3T(n,k)/2) = 3m. Similarly, if T(n+1,k) - T(n,k) = 2m+1, then T(n+1,k+1) - T(n,k+1) = ceiling(3T(n,k)/2 + 3m + 3/2) - ceiling(3T(n,k)/2) = {3m+1 or 3m+2, according to whether T(n,k) is even or odd}. The first differences of the first column T(n,0) are periodic: (3)*. The parities of the first column T(n,0) are periodic: (odd,even)*. Hence by induction using the prior two observations, the first differences and parities of every column will be periodic; e.g., for the second column T(n,2): the first differences are (4,5)* and the parities are (even,even,odd,odd)*; for the third column T(n,3): (6,8,6,7)* and (odd,odd,odd,odd,even,even,even,even)*; for the fourth column T(n,4): (9,12,9,10,9,12,9,11)* and (o,e,e,o,o,e,e,o,e,o,o,e,e,o,o,e)*. Is the period length of the first differences of column k always 2^{k-1}? And is the period length of parities always 2^k? Does every integer > 2 occur as T(n+1,k) - T(n,k) for some n and k? Is the smallest first difference in column k always A061418(k+1)? And is the largest first difference in column k always A061419(k+2)? - Glen Whitney, Aug 03 2018
Consider the following two-player game: Start with two nonempty piles of counters. Players alternate taking turns consisting of first discarding one of the piles and then dividing the remaining pile into two nonempty piles. The smaller pile may always be discarded; the larger pile may only be discarded if the smaller pile is at least half as large. (Either pile may be discarded if they are equal.) The player who cannot move (because the configuration has reached two piles of one counter each) loses. Then the numbers c for which two piles of size c is a losing configuration (for the player whose turn it is) are exactly T(4,k) for k > 1, together with 1,3,5, and 9. - Glen Whitney, Aug 03 2018

Examples

			Table begins:
   1  2  3   5   8  12  18  27  41   62   93  140 ...
   4  6  9  14  21  32  48  72 108  162  243  365 ...
   7 11 17  26  39  59  89 134 201  302  453  680 ...
  10 15 23  35  53  80 120 180 270  405  608  912 ...
  13 20 30  45  68 102 153 230 345  518  777 1166 ...
  16 24 36  54  81 122 183 275 413  620  930 1395 ...
  19 29 44  66  99 149 224 336 504  756 1134 1701 ...
  22 33 50  75 113 170 255 383 575  863 1295 1943 ...
  25 38 57  86 129 194 291 437 656  984 1476 2214 ...
  28 42 63  95 143 215 323 485 728 1092 1638 2457 ...
  31 47 71 107 161 242 363 545 818 1227 1841 2762 ...
		

Crossrefs

Row in which a number occurs: A163491.
Column in which a number occurs: A087088.

Formula

T(A163491(n)-1, A087088(n)-1) = n. - Peter Munn, Jul 16 2020 [corrected Peter Munn, Aug 02 2020]

A083047 Square table read by antidiagonals forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), where x = (sqrt(5)+1)/2, n>=0, k>=0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 8, 12, 15, 17, 13, 11, 20, 25, 28, 22, 18, 14, 33, 41, 46, 36, 30, 23, 16, 54, 67, 75, 59, 49, 38, 26, 19, 88, 109, 122, 96, 80, 62, 43, 31, 21, 143, 177, 198, 156, 130, 101, 70, 51, 34, 24, 232, 287, 321, 253, 211, 164, 114, 83, 56, 39, 27, 376
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2003

Keywords

Comments

First row is A000071 offset by 2, first column is A026352, main diagonal is A083048, antidiagonal sums give A083049.
A083047 is an interspersion (hence a dispersion), with fractal sequence A167198. See A167198 for a construction of A083047 that does not refer to (1+sqrt(5))/2. - Clark Kimberling, Oct 30 2009

Examples

			Table begins:
   1  2  4   7  12  20  33  54   88  143  232  376 ...
   3  5  9  15  25  41  67 109  177  287  465  753 ...
   6 10 17  28  46  75 122 198  321  520  842 1363 ...
   8 13 22  36  59  96 156 253  410  664 1075 1740 ...
  11 18 30  49  80 130 211 342  554  897 1452 2350 ...
  14 23 38  62 101 164 266 431  698 1130 1829 2960 ...
  16 26 43  70 114 185 300 486  787 1274 2062 3337 ...
  19 31 51  83 135 219 355 575  931 1507 2439 3947 ...
  21 34 56  91 148 240 389 630 1020 1651 2672 4324 ...
  24 39 64 104 169 274 444 719 1164 1884 3049 4934 ...
  27 44 72 117 190 308 499 808 1308 2117 3426 5544 ...
		

Crossrefs

Programs

  • Mathematica
    t[n_, 0] = Floor[n*GoldenRatio/(GoldenRatio - 1) + 1];
    t[n_, k_] := t[n, k] = Ceiling[GoldenRatio*t[n, k-1]];
    Flatten[Table[t[k-1, n-k ], {n, 12}, {k, n}] ][[;; 67]]
    (* Jean-François Alcover, Jul 13 2011 *)

A083087 Square table read by antidiagonals which forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), for n>=0, k>=0, where x = 1 + sqrt(2).

Original entry on oeis.org

1, 3, 2, 8, 5, 4, 20, 13, 10, 6, 49, 32, 25, 15, 7, 119, 78, 61, 37, 17, 9, 288, 189, 148, 90, 42, 22, 11, 696, 457, 358, 218, 102, 54, 27, 12, 1681, 1104, 865, 527, 247, 131, 66, 29, 14, 4059, 2666, 2089, 1273, 597, 317, 160, 71, 34, 16, 9800, 6437, 5044, 3074
Offset: 0

Views

Author

Paul D. Hanna, Apr 21 2003

Keywords

Comments

The array in A083087 is the dispersion of the sequence given floor(n+1+n*sqrt(2)). The Mathematica program at A191438 generates A083087 using f[n_]:=Floor[n*x+n+1] instead of f[n_]:=Floor[n*x+n]. - Clark Kimberling, Jun 04 2011

Examples

			Table begins:
   1  3   8  20  49  119  288 ...
   2  5  13  32  78  189  457 ...
   4 10  25  61 148  358  865 ...
   6 15  37  90 218  527 1273 ...
   7 17  42 102 247  597 1442 ...
   9 22  54 131 317  766 1850 ...
  11 27  66 160 387  935 2258 ...
  12 29  71 172 416 1005 2427 ...
  14 34  83 201 486 1174 2835 ...
  16 39  95 230 556 1343 3243 ...
  18 44 107 259 626 1512 3651 ...
  19 46 112 271 655 1582 3820 ...
  21 51 124 300 725 1751 4228 ...
  23 56 136 329 795 1920 4636 ...
  24 58 141 341 824 1990 4805 ...
		

Crossrefs

Cf. A083088 (first column), A048739 (first row), A083090 (diagonal), A083091 (antidiagonal sums), A083044, A083047, A083050.

Programs

  • Magma
    z:=10; x:=1+Sqrt(2); S:=[]; for n in [0..z] do for k in [0..n] do if n-k eq 0 then Append(~S, Floor(n*x/(x-1))+1); else Append(~S, Ceiling(x*S[k+1+(n*(n-1) div 2)])); end if; end for; end for; S; // Klaus Brockhaus, Jan 04 2011
  • Mathematica
    (See Comments.)

Formula

T(n,k+1) = 2*T(n,k) + T(n,k-1) + 1 for n>=0, k>=1.

A083088 First column of table A083087.

Original entry on oeis.org

1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 65, 67, 69, 70, 72, 74, 76, 77, 79, 81, 82, 84, 86, 88, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 106, 108, 110, 111, 113, 115
Offset: 0

Views

Author

Paul D. Hanna, Apr 21 2003

Keywords

Comments

It appears that A188937 gives the positions of 0 in the zero-one sequence A188037; complement of A080754. - Clark Kimberling, Mar 19 2011
Is this (apart from the prefixed a(0)) the same as A080755? - R. J. Mathar, Jul 31 2025

Crossrefs

Programs

  • Magma
    z:=70; x:=1+Sqrt(2); [ Floor(n*x/(x-1))+1: n in [0..z] ]; // Klaus Brockhaus, Jan 04 2011
  • Mathematica
    f[n_] := Floor[n/Sqrt@2 + n + 1]; Array[f, 68, 0]

Formula

a(n) = floor(n*x/(x-1)) + 1, n>=0, where x=1+sqrt(2).
a(n) = floor(n/sqrt(2)) + n + 1 = 1+n+A049472(n).

Extensions

This entry formerly contained an erroneous comment, which was deleted by N. J. A. Sloane, Jan 30 2008

A367832 Array T(n, k) read by ascending antidiagonals is a dispersion based on A367467. Column 1 lists the numbers which cannot be represented by A367467(m) + m. For k >= 1, T(n, k+1) = A367467(T(n, k)) + T(n, k).

Original entry on oeis.org

1, 4, 2, 7, 6, 3, 11, 9, 10, 5, 14, 12, 15, 17, 8, 18, 16, 20, 25, 29, 13, 21, 19, 27, 34, 42, 49, 22, 24, 23, 32, 46, 58, 71, 83, 37, 28, 26, 39, 54, 78, 99, 121, 141, 63, 31, 30, 44, 66, 92, 133, 169, 206, 240, 107, 35, 33, 51, 75, 112, 157, 227, 288, 351, 409, 182, 38, 36, 56, 87, 128, 191, 268
Offset: 1

Views

Author

Thomas Scheuerle, Dec 02 2023

Keywords

Comments

This sequence is a permutation of the positive integers.
The array T(n, k+1) - T(n, k) for k > 1 is also a permutation of the positive integers.
Columns k > 2 together consist of all the numbers from A003152. These are all the positive numbers of the form floor(m*(1+1/sqrt(2))).
In column 2 are all the numbers from A184119. These are all the numbers of the form floor((2+sqrt(2))*m - sqrt(2)/2).
Column 2 together with the columns k > 2 are all the numbers from A087057; these are all the numbers of the form ceiling(m*sqrt(2)). Together with column 1, which consists of all the numbers from A083051, they cover all positive integers.
An alternative definition that allows this array to be obtained without using A367467:
Take for T(n, 1) and T(n, 2) the first and the second number which do not appear in any row r < n. Complete all rows by the recurrence T(n, k) = floor(T(n, k-1)*(1 + 1/sqrt(2))). Start in the first row with T(1, 1) = 1 and T(1, 2) = 2.
Let Q(n, k) = T(n, k+2) - T(n, k+1) for k > 0. Let b(m) be the row n where the integer m is found in Q. Then we will obtain for (b(n)) the sequence: 1, 1, 1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 6, 4, 1, ... . If we were to remove the first occurrence of each number in this sequence, we would get the same sequence again, hence (b(n)) is a fractal sequence.

Examples

			Array T(n, k) begins:
   1,  2,  3,  5,   8,  13,  22,  37,  63,  107, ...
   4,  6, 10, 17,  29,  49,  83, 141, 240,  409, ...
   7,  9, 15, 25,  42,  71, 121, 206, 351,  599, ...
  11, 12, 20, 34,  56,  99, 169, 288, 491,  839, ...
  14, 16, 27, 46,  78, 133, 227, 387, 660, 1126, ...
  18, 19, 32, 54,  92, 157, 268, 457, 780, 1331, ...
  21, 23, 39, 66, 112, 191, 326, 556, 949, 1620, ...
  ...
		

References

  • Clark Kimberling, Fractal sequences and interspersions, Ars Combinatoria 45 (1997) 157-168.

Crossrefs

Cf. A083050 (a closely related dispersion).

Formula

T(1, k) = A293078(k).
T(n, 1) = A083051(n-1).
T(n, 2) = A184119(n).
Conjectured: T(n, 3) = A328987(n-1).
T(1, k) = 2*T(1, k-1) - T(1, k-2) + floor(T(1, k-2)/2), for k > 2.
T(n, k+1) = floor(T(n, k)*(1+1/sqrt(2))) for k > 1.
T(n, k+1) = A367467(T(n, k)) + T(n, k).

Extensions

Edited by Peter Munn, Dec 11 2023

A083045 Main diagonal of table A083044.

Original entry on oeis.org

1, 6, 17, 35, 68, 122, 224, 383, 656, 1092, 1841, 2978, 4859, 7835, 12776, 20291, 32664, 51422, 82485, 129720, 204821, 319482, 506060, 789872, 1237733, 1927494, 3024318, 4687259, 7274921, 11271293, 17578760, 27133793, 42125475, 64909160
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2003

Keywords

Crossrefs

Formula

a(n) = T(n, n), where T(n, 0) = floor(n*x/(x-1)) + 1, T(n, k+1) = ceiling(x*T(n, k)), for n >= 0, k >= 0, with x=3/2.
Showing 1-10 of 15 results. Next