cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A083045 Main diagonal of table A083044.

Original entry on oeis.org

1, 6, 17, 35, 68, 122, 224, 383, 656, 1092, 1841, 2978, 4859, 7835, 12776, 20291, 32664, 51422, 82485, 129720, 204821, 319482, 506060, 789872, 1237733, 1927494, 3024318, 4687259, 7274921, 11271293, 17578760, 27133793, 42125475, 64909160
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2003

Keywords

Crossrefs

Formula

a(n) = T(n, n), where T(n, 0) = floor(n*x/(x-1)) + 1, T(n, k+1) = ceiling(x*T(n, k)), for n >= 0, k >= 0, with x=3/2.

A083046 Antidiagonal sums of table A083044.

Original entry on oeis.org

1, 6, 16, 35, 67, 118, 197, 319, 506, 789, 1215, 1860, 2830, 4290, 6481, 9771, 14708, 22120, 33239, 49921, 74946, 112490, 168807, 253286, 380008, 570095, 855228, 1282931, 1924490, 2886828, 4330341, 6495613, 9743524, 14615392, 21923196
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2003

Keywords

Crossrefs

Formula

a(n) = Sum_{k=0..n} T(k, n-k), where T(n, 0) = floor(n*x/(x-1))+1, T(n, k+1) = ceiling(x*T(n, k)), for n>=0, k>=0, with x=3/2.

A048739 Expansion of 1/((1 - x)*(1 - 2*x - x^2)).

Original entry on oeis.org

1, 3, 8, 20, 49, 119, 288, 696, 1681, 4059, 9800, 23660, 57121, 137903, 332928, 803760, 1940449, 4684659, 11309768, 27304196, 65918161, 159140519, 384199200, 927538920, 2239277041, 5406093003, 13051463048, 31509019100, 76069501249
Offset: 0

Views

Author

Keywords

Comments

Partial sums of Pell numbers A000129.
W(n){1,3;2,-1,1} = Sum_{i=1..n} W(i){1,2;2,-1,0}, where W(n){a,b; p,q,r} implies x(n) = p*x(n-1) - q*x(n-2) + r; x(0)=a, x(1)=b.
Number of 2 X (n+1) binary arrays with path of adjacent 1's from upper left to lower right corner. - R. H. Hardin, Mar 16 2002
Binomial transform of A029744. - Paul Barry, Apr 23 2004
Number of (s(0), s(1), ..., s(n+2)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n+2, s(0) = 1, s(n+2) = 3. - Herbert Kociemba, Jun 16 2004
Equals row sums of triangle A153346. - Gary W. Adamson, Dec 24 2008
Equals the sum of the terms of the antidiagonals of A142978. - J. M. Bergot, Nov 13 2012
a(p-2) == 0 mod p where p is an odd prime, see A270342. - Altug Alkan, Mar 15 2016
Also, the lexicographically earliest sequence of positive integers such that for n > 3, {sqrt(2)*a(n)} is located strictly between {sqrt(2)*a(n-1)} and {sqrt(2)*a(n-2)} where {} denotes the fractional part. - Ivan Neretin, May 02 2017
a(n+1) is the number of weak orderings on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1 < ... < n. - J. Devillet, Oct 06 2017

References

  • Allombert, Bill, Nicolas Brisebarre, and Alain Lasjaunias. "On a two-valued sequence and related continued fractions in power series fields." The Ramanujan Journal 45.3 (2018): 859-871. See Theorem 3, d_{4n+3}.

Crossrefs

First row of table A083087.
With a different offset, a(4n)=A008843(n), a(4n-2)=8*A001110(n), a(2n-1)=A001652(n).

Programs

  • Maple
    a:=n->sum(fibonacci(i,2), i=0..n): seq(a(n), n=1..29); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    Join[{a=1,b=3},Table[c=2*b+a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
    CoefficientList[Series[1/(1-3x+x^2+x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,-1,-1},{1,3,8},30] (* Harvey P. Dale, Jun 13 2011 *)
  • PARI
    a(n)=local(w=quadgen(8));-1/2+(3/4+1/2*w)*(1+w)^n+(3/4-1/2*w)*(1-w)^n
    
  • PARI
    vector(100, n, n--; floor((1+sqrt(2))^(n+2)/4)) \\ Altug Alkan, Oct 07 2015
    
  • PARI
    Vec(1/((1-x)*(1-2*x-x^2)) + O(x^40)) \\ Michel Marcus, May 06 2017

Formula

a(n) = 2*a(n-1) + a(n-2) + 1 with n > 1, a(0)=1, a(1)=3.
a(n) = ((2 + (3*sqrt(2))/2)*(1 + sqrt(2))^n - (2 - (3*sqrt(2))/2)*(1 - sqrt(2))^n )/(2*sqrt(2)) - 1/2.
a(0)=1, a(n+1) = ceiling(x*a(n)) for n > 0, where x = 1+sqrt(2). - Paul D. Hanna, Apr 22 2003
a(n) = 3*a(n-1) - a(n-2) - a(n-3). With two leading zeros, e.g.f. is exp(x)(cosh(sqrt(2)x)-1)/2. a(n) = Sum_{k=0..floor((n+2)/2)} binomial(n+2, 2k+2)2^k. - Paul Barry, Aug 16 2003
-a(-3-n) = A077921(n). - N. J. A. Sloane, Sep 13 2003
E.g.f.: exp(x)(cosh(x/sqrt(2)) + sqrt(2)sinh(x/sqrt(2)))^2. - N. J. A. Sloane, Sep 13 2003
a(n) = floor((1+sqrt(2))^(n+2)/4). - Bruno Berselli, Feb 06 2013
a(n) = (((1-sqrt(2))^(n+2) + (1+sqrt(2))^(n+2) - 2) / 4). - Altug Alkan, Mar 16 2016
2*a(n) = A001333(n+2)-1. - R. J. Mathar, Oct 11 2017
a(n) = Sum_{k=0..n} binomial(n+1,k+1)*2^floor(k/2). - Tony Foster III, Oct 12 2017

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 11 2002

A191655 Dispersion of (2,5,8,11,14,17,...), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 6, 4, 5, 10, 7, 9, 8, 16, 12, 15, 13, 11, 25, 19, 24, 21, 18, 14, 39, 30, 37, 33, 28, 22, 17, 60, 46, 57, 51, 43, 34, 27, 20, 91, 70, 87, 78, 66, 52, 42, 31, 23, 138, 106, 132, 118, 100, 79, 64, 48, 36, 26, 208, 160, 199, 178, 151, 120, 97, 73, 55
Offset: 1

Views

Author

Clark Kimberling, Jun 10 2011

Keywords

Comments

Row 1: A152009.
For a background discussion of dispersions, see A191426.
...
Each of the sequences (3n, n>0), (3n+1, n>0), (3n+2, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The six sequences and dispersions are listed here:
...
A191449=dispersion of A008583 (0 mod 3)
A191451=dispersion of A016777 (1 mod 3)
A191450=dispersion of A016789 (2 mod 3)
A191656=dispersion of A001651 (1 or 2 mod 3)
A083044=dispersion of A007494 (0 or 2 mod 3)
A191655=dispersion of A032766 (0 or 1 mod 3)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191449 has 1st col A001651, all else A008583
A191451 has 1st col A007494, all else A016777
A191450 has 1st col A032766, all else A016789
A191656 has 1st col A008583, all else A001651
A083044 has 1st col A016777, all else A083044
A191655 has 1st col A016789, all else A032766
...
There is a formula for sequences of the type "(a or b mod m)", (as in the Mathematica program below):
If f(n)=(n mod 2), then (a,b,a,b,a,b,...) is given by
a*f(n+1)+b*f(n), so that "(a or b mod m)" is given by
a*f(n+1)+b*f(n)+m*floor((n-1)/2)), for n>=1.

Examples

			Northwest corner:
1...3...6....10...16
2...4...7....12...19
5...9...15...24...37
8...13..21...33...51
11..18..28...43...66
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a = 3; b = 4; m[n_] := If[Mod[n, 2] == 0, 1, 0];
    f[n_] := a*m[n + 1] + b*m[n] + 3*Floor[(n - 1)/2]
    Table[f[n], {n, 1, 30}]  (* A032766: (3+5k,4+5k, k>=0) *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i,1,10}, {j,1,10}]]          (* A191655 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]]   (* A191655 sequence *)

A083047 Square table read by antidiagonals forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), where x = (sqrt(5)+1)/2, n>=0, k>=0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 8, 12, 15, 17, 13, 11, 20, 25, 28, 22, 18, 14, 33, 41, 46, 36, 30, 23, 16, 54, 67, 75, 59, 49, 38, 26, 19, 88, 109, 122, 96, 80, 62, 43, 31, 21, 143, 177, 198, 156, 130, 101, 70, 51, 34, 24, 232, 287, 321, 253, 211, 164, 114, 83, 56, 39, 27, 376
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2003

Keywords

Comments

First row is A000071 offset by 2, first column is A026352, main diagonal is A083048, antidiagonal sums give A083049.
A083047 is an interspersion (hence a dispersion), with fractal sequence A167198. See A167198 for a construction of A083047 that does not refer to (1+sqrt(5))/2. - Clark Kimberling, Oct 30 2009

Examples

			Table begins:
   1  2  4   7  12  20  33  54   88  143  232  376 ...
   3  5  9  15  25  41  67 109  177  287  465  753 ...
   6 10 17  28  46  75 122 198  321  520  842 1363 ...
   8 13 22  36  59  96 156 253  410  664 1075 1740 ...
  11 18 30  49  80 130 211 342  554  897 1452 2350 ...
  14 23 38  62 101 164 266 431  698 1130 1829 2960 ...
  16 26 43  70 114 185 300 486  787 1274 2062 3337 ...
  19 31 51  83 135 219 355 575  931 1507 2439 3947 ...
  21 34 56  91 148 240 389 630 1020 1651 2672 4324 ...
  24 39 64 104 169 274 444 719 1164 1884 3049 4934 ...
  27 44 72 117 190 308 499 808 1308 2117 3426 5544 ...
		

Crossrefs

Programs

  • Mathematica
    t[n_, 0] = Floor[n*GoldenRatio/(GoldenRatio - 1) + 1];
    t[n_, k_] := t[n, k] = Ceiling[GoldenRatio*t[n, k-1]];
    Flatten[Table[t[k-1, n-k ], {n, 12}, {k, n}] ][[;; 67]]
    (* Jean-François Alcover, Jul 13 2011 *)

A083050 Square table read by antidiagonals forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), where x = sqrt(2), n>=0, k>=0.

Original entry on oeis.org

1, 2, 4, 3, 6, 7, 5, 9, 10, 11, 8, 13, 15, 16, 14, 12, 19, 22, 23, 20, 18, 17, 27, 32, 33, 29, 26, 21, 25, 39, 46, 47, 42, 37, 30, 24, 36, 56, 66, 67, 60, 53, 43, 34, 28, 51, 80, 94, 95, 85, 75, 61, 49, 40, 31, 73, 114, 133, 135, 121, 107, 87, 70, 57, 44, 35, 104, 162, 189
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2003

Keywords

Comments

First column is A083051, main diagonal is A083052, antidiagonal sums give A083053.
A083050 is the dispersion of the sequence given by floor(1+n*sqrt(2)); for a discussion of dispersions, see A191429.

Examples

			Table begins:
   1  2  3   5   8  12  17  25  36  51   73  104 ...
   4  6  9  13  19  27  39  56  80 114  162  230 ...
   7 10 15  22  32  46  66  94 133 189  268  380 ...
  11 16 23  33  47  67  95 135 191 271  384  544 ...
  14 20 29  42  60  85 121 172 244 346  490  693 ...
  18 26 37  53  75 107 152 215 305 432  611  865 ...
  21 30 43  61  87 124 176 249 353 500  708 1002 ...
  24 34 49  70  99 141 200 283 401 568  804 1138 ...
  28 40 57  81 115 163 231 327 463 655  927 1311 ...
  31 44 63  90 128 182 258 365 517 732 1036 1466 ...
  35 50 71 101 143 203 288 408 577 817 1156 1635 ...
		

Crossrefs

Programs

  • Mathematica
    (* program generates the dispersion array T of the complement of increasing sequence f[n] *)
    r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *)
    c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *)
    x = Sqrt[2]; f[n_] := Floor[n*x + 1]
    (* f(n) is complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A083050 as an array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* array as a sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011, added here Jun 03 2011 by Clark Kimberling *)

A087088 Positive ruler-type fractal sequence with 1's in every third position.

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 1, 5, 3, 1, 2, 6, 1, 4, 2, 1, 3, 7, 1, 2, 5, 1, 3, 2, 1, 4, 8, 1, 2, 3, 1, 6, 2, 1, 4, 3, 1, 2, 5, 1, 9, 2, 1, 3, 4, 1, 2, 7, 1, 3, 2, 1, 5, 4, 1, 2, 3, 1, 6, 2, 1, 10, 3, 1, 2, 4, 1, 5, 2, 1, 3, 8, 1, 2, 4, 1, 3, 2, 1, 6, 5, 1, 2, 3, 1, 4, 2, 1, 7, 3, 1, 2, 11, 1, 4, 2, 1, 3, 5, 1, 2, 6, 1, 3, 2
Offset: 1

Views

Author

Enrico T. Federighi (rico125162(AT)aol.com), Aug 08 2003

Keywords

Comments

If all the terms in the sequence are reduced by one and then all zeros are removed, the result is the same as the original sequence.
From Benoit Cloitre, Mar 07 2009: (Start)
To construct the sequence:
Step 1: start from a sequence of 1's and leave two undefined places between every pair of 1's giving: 1,(),(),1,(),(),1,(),(),1,(),(),1,(),(),1,...
Step 2: replace the first undefined place with a 2 and henceforth leave two undefined places between two 2's giving: 1,2,(),1,(),2,1,(),(),1,2,(),1,(),2,1,...
Step 3: replace the first undefined place with a 3 and henceforth leave two undefined places between two 3's giving: 1,2,3,1,(),2,1,(),3,1,2,(),1,(),2,1,...
Step 4: replace the first undefined place with a 4 and leave 2 undefined places between two 4's giving: 1,2,3,1,4,2,1,(),3,1,2,(),1,4,2,1,... Iterating the process indefinitely yields the sequence: 1,2,3,1,4,2,1,5,3,1,2,6,1,4,2,1,... (End)
From Peter Munn, Jul 10 2020: (Start)
For k >= 1, the number k occurs in a pattern with fundamental period 3^k, and with points of mirror symmetry at intervals of (3^k)/2. Those points have an extrapolated common origin (for k >= 1) at an offset 1.5 to the left of the sequence's initial "1". The snake format illustration in the example section may be useful for visualizing this.
(End)
For k >= 1, k first occurs at position A061419(k) and its k-th occurrence is at position A083045(k-1). - Peter Munn, Aug 23 2020
(a(n)) is the unique fixed point of the two-block substitution a,b -> 1,a+1,b+1, where a,b are natural numbers. - Michel Dekking, Sep 26 2022

Examples

			From _Peter Munn_, Jul 03 2020: (Start)
Listing the terms in a snake format (with period 27) illustrates periodic and mirror symmetries. Horizontal lines mark points of mirror symmetry for 3's. Vertical lines mark further points of mirror symmetry for 2's. 79 terms are shown. (Referred to the extrapolated common origin of periodic mirror symmetry, the initial term is at offset 1.5 and the last shown is at offset 79.5 = 3^4 - 1.5.) Observe also mirror symmetry of 4's (seen vertically).
    1  2  3  1  4  2  1  5   3  1  2  6
             |             |            1 --
    1  2  3  1  5  2  1  7   3  1  2  4
_ 4
  8
    1  2  3  1  6  2  1  4   3  1  2  5
             |             |            1 --
    1  2  3  1  7  2  1  4   3  1  2  9
_ 5
  4
    1  2  3  1  6  2  1 10   3  1  2  4
             |             |            1 --
    1  2  3  1  4  2  1  8   3  1  2  5
(End)
From _Peter Munn_, Aug 22 2020: (Start)
The start of the sequence is shown below in conjunction with related sequences, aligning their points of mirror symmetry. The longer, and shorter, vertical lines indicate points of mirror symmetry for terms valued less than 4, and less than 3, respectively. Note each term of A051064 is the minimum of two terms displayed nearest below it, and each term of A254046 is the minimum of the two terms displayed diagonally above it.
        |                          |                          |
A051064:| 1 1 2 1 1 2 1 1 3 1 1 2 1 1 2 1 1 3 1 1 2 1 1 2 1 1 4 1 1 2
        |        |        |        |        |        |        |
[a(n)]: |  1 2 3 1 4 2 1 5 3 1 2 6 1 4 2 1 3 7 1 2 5 1 3 2 1 4 8 1 2 3
        |        |        |        |        |        |        |
A254046:|1 2 1 1 3 1 1 2 1 1 2 1 1 4 1 1 2 1 1 2 1 1 3 1 1 2 1 1 2 1 1
        |                          |                          |
(End)
		

Crossrefs

Sequences with equivalent symmetries: A051064, A254046.
Records are given by A061419: a(A061419(n))=n.
Essentially the odd bisection of A335933.
Sequence with similar definition: A087165.
Ordinal transform of A163491, with which this sequence has a joint relationship to A083044, A083045.
See also the comment in A024629.

Programs

Formula

a(n) = 1 when n == 1 (mod 3), otherwise a(n) = a(n-ceiling(n/3)) + 1.
a(n) = 3 + A244040(3*(n-1)) - A244040(3*n). - Tom Edgar and James Van Alstine, Aug 04 2014
From Peter Munn, Aug 22 2020: (Start)
For m >= 0, a(3*m+1) = 1; a(3*m+2) = a(2*m+1) + 1; a(3*m+3) = a(2*m+2) + 1.
For n >= 1, the following identities hold.
a(n) = A335933(2*n+1).
A083044(A163491(n) - 1, a(n) - 1) = n.
A051064(n+1) = min(a(n), a(n+1)).
A254046(n+2) = min(a(n), a(n+2)). (End)

Extensions

More terms from Paul D. Hanna, Aug 21 2003
Offset changed by M. F. Hasler (following remarks by Peter Munn), Jul 13 2020
Thanks to Allan C. Wechsler for suggesting the new name. - N. J. A. Sloane, Jul 14 2020

A083087 Square table read by antidiagonals which forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), for n>=0, k>=0, where x = 1 + sqrt(2).

Original entry on oeis.org

1, 3, 2, 8, 5, 4, 20, 13, 10, 6, 49, 32, 25, 15, 7, 119, 78, 61, 37, 17, 9, 288, 189, 148, 90, 42, 22, 11, 696, 457, 358, 218, 102, 54, 27, 12, 1681, 1104, 865, 527, 247, 131, 66, 29, 14, 4059, 2666, 2089, 1273, 597, 317, 160, 71, 34, 16, 9800, 6437, 5044, 3074
Offset: 0

Views

Author

Paul D. Hanna, Apr 21 2003

Keywords

Comments

The array in A083087 is the dispersion of the sequence given floor(n+1+n*sqrt(2)). The Mathematica program at A191438 generates A083087 using f[n_]:=Floor[n*x+n+1] instead of f[n_]:=Floor[n*x+n]. - Clark Kimberling, Jun 04 2011

Examples

			Table begins:
   1  3   8  20  49  119  288 ...
   2  5  13  32  78  189  457 ...
   4 10  25  61 148  358  865 ...
   6 15  37  90 218  527 1273 ...
   7 17  42 102 247  597 1442 ...
   9 22  54 131 317  766 1850 ...
  11 27  66 160 387  935 2258 ...
  12 29  71 172 416 1005 2427 ...
  14 34  83 201 486 1174 2835 ...
  16 39  95 230 556 1343 3243 ...
  18 44 107 259 626 1512 3651 ...
  19 46 112 271 655 1582 3820 ...
  21 51 124 300 725 1751 4228 ...
  23 56 136 329 795 1920 4636 ...
  24 58 141 341 824 1990 4805 ...
		

Crossrefs

Cf. A083088 (first column), A048739 (first row), A083090 (diagonal), A083091 (antidiagonal sums), A083044, A083047, A083050.

Programs

  • Magma
    z:=10; x:=1+Sqrt(2); S:=[]; for n in [0..z] do for k in [0..n] do if n-k eq 0 then Append(~S, Floor(n*x/(x-1))+1); else Append(~S, Ceiling(x*S[k+1+(n*(n-1) div 2)])); end if; end for; end for; S; // Klaus Brockhaus, Jan 04 2011
  • Mathematica
    (See Comments.)

Formula

T(n,k+1) = 2*T(n,k) + T(n,k-1) + 1 for n>=0, k>=1.

A083051 First column of table A083050.

Original entry on oeis.org

1, 4, 7, 11, 14, 18, 21, 24, 28, 31, 35, 38, 41, 45, 48, 52, 55, 59, 62, 65, 69, 72, 76, 79, 82, 86, 89, 93, 96, 100, 103, 106, 110, 113, 117, 120, 123, 127, 130, 134, 137, 140, 144, 147, 151, 154, 158, 161, 164, 168, 171, 175, 178, 181, 185, 188, 192, 195, 199, 202
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2003

Keywords

Crossrefs

Formula

a(n)=floor(n*x/(x-1))+1, x=sqrt(2).

A083088 First column of table A083087.

Original entry on oeis.org

1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 65, 67, 69, 70, 72, 74, 76, 77, 79, 81, 82, 84, 86, 88, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 106, 108, 110, 111, 113, 115
Offset: 0

Views

Author

Paul D. Hanna, Apr 21 2003

Keywords

Comments

It appears that A188937 gives the positions of 0 in the zero-one sequence A188037; complement of A080754. - Clark Kimberling, Mar 19 2011
Is this (apart from the prefixed a(0)) the same as A080755? - R. J. Mathar, Jul 31 2025

Crossrefs

Programs

  • Magma
    z:=70; x:=1+Sqrt(2); [ Floor(n*x/(x-1))+1: n in [0..z] ]; // Klaus Brockhaus, Jan 04 2011
  • Mathematica
    f[n_] := Floor[n/Sqrt@2 + n + 1]; Array[f, 68, 0]

Formula

a(n) = floor(n*x/(x-1)) + 1, n>=0, where x=1+sqrt(2).
a(n) = floor(n/sqrt(2)) + n + 1 = 1+n+A049472(n).

Extensions

This entry formerly contained an erroneous comment, which was deleted by N. J. A. Sloane, Jan 30 2008
Showing 1-10 of 18 results. Next