cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A089072 Triangle read by rows: T(n,k) = k^n, n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 1, 4, 1, 8, 27, 1, 16, 81, 256, 1, 32, 243, 1024, 3125, 1, 64, 729, 4096, 15625, 46656, 1, 128, 2187, 16384, 78125, 279936, 823543, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489
Offset: 1

Views

Author

Alford Arnold, Dec 04 2003

Keywords

Comments

T(n, k) = number of mappings from an n-element set into a k-element set. - Clark Kimberling, Nov 26 2004
Let S be the semigroup of (full) transformations on [n]. Let a be in S with rank(a) = k. Then T(n,k) = |a S|, the number of elements in the right principal ideal generated by a. - Geoffrey Critzer, Dec 30 2021
From Manfred Boergens, Jun 23 2024: (Start)
In the following two comments the restriction k<=n can be lifted, allowing all k>=1.
T(n,k) is the number of n X k binary matrices with row sums = 1.
T(n,k) is the number of coverings of [n] by tuples (A_1,...,A_k) in P([n])^k with disjoint A_j, with P(.) denoting the power set.
For nonempty A_j see A019538.
For tuples with "disjoint" dropped see A092477.
For tuples with nonempty A_j and with "disjoint" dropped see A218695. (End)

Examples

			Triangle begins:
  1;
  1,  4;
  1,  8,  27;
  1, 16,  81,  256;
  1, 32, 243, 1024,  3125;
  1, 64, 729, 4096, 15625, 46656;
  ...
		

Crossrefs

Related to triangle of Eulerian numbers A008292.

Programs

  • Haskell
    a089072 = flip (^)
    a089072_row n = map (a089072 n) [1..n]
    a089072_tabl = map a089072_row [1..]  -- Reinhard Zumkeller, Mar 18 2013
    
  • Magma
    [k^n: k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 01 2022
    
  • Mathematica
    Column[Table[k^n, {n, 8}, {k, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
  • SageMath
    flatten([[k^n for k in range(1,n+1)] for n in range(1,12)]) # G. C. Greubel, Nov 01 2022

Formula

Sum_{k=1..n} T(n, k) = A031971(n).
T(n, n) = A000312(n).
T(2*n, n) = A062206(n).
a(n) = (n + T*(1-T)/2)^T, where T = round(sqrt(2*n),0). - Gerald Hillier, Apr 12 2015
T(n,k) = A051129(n,k). - R. J. Mathar, Dec 10 2015
T(n,k) = Sum_{i=0..k} Stirling2(n,i)*binomial(k,i)*i!. - Geoffrey Critzer, Dec 30 2021
From G. C. Greubel, Nov 01 2022: (Start)
T(n, n-1) = A007778(n-1), n >= 2.
T(n, n-2) = A008788(n-2), n >= 3.
T(2*n+1, n) = A085526(n).
T(2*n-1, n) = A085524(n).
T(2*n-1, n-1) = A085526(n-1), n >= 2.
T(3*n, n) = A083282(n).
Sum_{k=1..n} (-1)^k * T(n, k) = (-1)^n * A120485(n).
Sum_{k=1..floor(n/2)} T(n-k, k) = A226065(n).
Sum_{k=1..floor(n/2)} T(n, k) = A352981(n).
Sum_{k=1..floor(n/3)} T(n, k) = A352982(n). (End)

Extensions

More terms and better definition from Herman Jamke (hermanjamke(AT)fastmail.fm), Jul 10 2004
Offset corrected by Reinhard Zumkeller, Mar 18 2013

A283533 a(n) = Sum_{d|n} d^(2*d + 1).

Original entry on oeis.org

1, 33, 2188, 262177, 48828126, 13060696236, 4747561509944, 2251799813947425, 1350851717672994277, 1000000000000048828158, 895430243255237372246532, 953962166440690142662256812, 1192533292512492016559195008118
Offset: 1

Views

Author

Seiichi Manyama, Mar 10 2017

Keywords

Comments

Inverse Mobius transform of A085526. - R. J. Mathar, Mar 11 2017

Examples

			a(6) = 1^(2+1) + 2^(4+1) + 3^(6+1) + 6^(12+1) = 13060696236.
		

Crossrefs

Cf. Sum_{d|n} d^(k*d+1): A283498 (k=1), this sequence (k=2), A283535 (k=3).
Cf. A308696.

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Total[d^(2 d + 1)]]; Array[f, 14] (* Robert G. Wilson v, Mar 10 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d^(2*d+1)); \\ Michel Marcus, Mar 11 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k))))) \\ Seiichi Manyama, Jun 18 2019

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(2*k))) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 18 2019

A085524 a(0) = 0; a(n) = n^(2*n-1) for n > 0.

Original entry on oeis.org

0, 1, 8, 243, 16384, 1953125, 362797056, 96889010407, 35184372088832, 16677181699666569, 10000000000000000000, 7400249944258160101211, 6624737266949237011120128, 7056410014866816666030739693, 8819763977946281130444984418304, 12783403948858939111232757568359375
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2003

Keywords

Comments

For n > 0, a(n) is the square of the determinant of the (2*n) X (2*n) matrix with elements M(j,k) = cos(Pi*j*k/n). See the MathOverflow link. - Hugo Pfoertner, Sep 18 2021

Crossrefs

Programs

  • Magma
    [n eq 0 select 0 else n^(2*n-1): n in [0..30]]; // G. C. Greubel, Nov 01 2022
    
  • Mathematica
    Join[{0}, Table[n^(2 n - 1), {n, 20}]] (* Harvey P. Dale, May 16 2016 *)
  • PARI
    a(n) = if(n==0, 0, n^(2*n-1)) \\ Altug Alkan, Oct 04 2017
    
  • SageMath
    [0]+[n^(2*n-1) for n in range(1,31)] # G. C. Greubel, Nov 01 2022

Formula

a(n) = n! * [x^n] -LambertW(-n*x). - Ilya Gutkovskiy, Oct 04 2017
a(n) = A089072(2*n-1, n), n >= 1. - G. C. Greubel, Nov 01 2022

A329910 Number of harmoniously labeled graphs with n edges and at most n vertices.

Original entry on oeis.org

0, 0, 1, 4, 32, 72, 2187, 20736, 262144, 3200000, 48828125, 729000000, 13060694016, 230539333248, 4747561509943, 96717311574016, 2251799813685250, 51998697814229000, 1350851717672990000, 34867844010000000000, 1000000000000000000000, 28531167061100000000000
Offset: 1

Views

Author

Christian Barrientos, Nov 23 2019

Keywords

Comments

A graph G with n edges is harmonious if there is an injection f from its vertex set to the group of integers modulo n such that when each edge uv of G is assigned the weight f(u)+f(v) (mod n), the resulting weights are distinct.

Examples

			a(3)=1 because there is only one harmonious graph with 3 edges and at most 3 vertices.
		

Crossrefs

A085526 contains the odd-indexed terms.

Programs

  • Mathematica
    Table[If[EvenQ[n],(n*(n-2)/4)^(n/2),((n-1)/2)^n],{n,1,22}] (* Stefano Spezia, Nov 24 2019 *)

Formula

For n odd, a(n) = ((n-1)/2)^n. For n even, a(n) = (n*(n-2)/4)^(n/2).
Showing 1-4 of 4 results.