cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A033846 Numbers whose prime factors are 2 and 5.

Original entry on oeis.org

10, 20, 40, 50, 80, 100, 160, 200, 250, 320, 400, 500, 640, 800, 1000, 1250, 1280, 1600, 2000, 2500, 2560, 3200, 4000, 5000, 5120, 6250, 6400, 8000, 10000, 10240, 12500, 12800, 16000, 20000, 20480, 25000, 25600, 31250, 32000, 40000, 40960
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that Sum_{d prime divisor of k} 1/d = 7/10. - Benoit Cloitre, Apr 13 2002
Numbers k such that phi(k) = (2/5)*k. - Benoit Cloitre, Apr 19 2002
Numbers k such that Sum_{d|k} A008683(d)*A000700(d) = 7. - Carl Najafi, Oct 20 2011

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a033846 n = a033846_list !! (n-1)
    a033846_list = f (singleton (2*5)) where
       f s = m : f (insert (2*m) $ insert (5*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    [n:n in [1..100000]| Set(PrimeDivisors(n)) eq {2,5}]; // Marius A. Burtea, May 10 2019
  • Maple
    A033846 := proc(n)
    if (numtheory[factorset](n) = {2,5}) then
       RETURN(n)
    fi: end:  seq(A033846(n),n=1..50000); # Jani Melik, Feb 24 2011
  • Mathematica
    Take[Union[Times@@@Select[Flatten[Table[Tuples[{2,5},n],{n,2,15}],1], Length[Union[#]]>1&]],45] (* Harvey P. Dale, Dec 15 2011 *)
  • PARI
    isA033846(n)=factor(n)[,1]==[2,5]~ \\ Charles R Greathouse IV, Feb 24 2011
    

Formula

a(n) = 10*A003592(n).
A143201(a(n)) = 4. - Reinhard Zumkeller, Sep 13 2011
Sum_{n>=1} 1/a(n) = 1/4. - Amiram Eldar, Dec 22 2020

Extensions

Offset fixed by Reinhard Zumkeller, Sep 13 2011

A147571 Numbers with exactly 4 distinct prime divisors {2,3,5,7}.

Original entry on oeis.org

210, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2520, 2940, 3150, 3360, 3780, 4200, 4410, 5040, 5250, 5670, 5880, 6300, 6720, 7350, 7560, 8400, 8820, 9450, 10080, 10290, 10500, 11340, 11760, 12600, 13230, 13440, 14700, 15120, 15750, 16800
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Successive numbers k such that EulerPhi(x)/x = m:
( Family of sequences for successive n primes )
m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^4] | PrimeDivisors(n) eq [2,3,5,7]]; // Vincenzo Librandi, Sep 15 2015
    
  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 8/35, AppendTo[a, x]], {x, 1, 100000}]; a
    Select[Range[20000],PrimeNu[#]==4&&Max[FactorInteger[#][[;;,1]]]<11&] (* Harvey P. Dale, Nov 05 2024 *)
  • PARI
    is(n)=n%210==0 && n==2^valuation(n,2) * 3^valuation(n,3) * 5^valuation(n,5) * 7^valuation(n,7) \\ Charles R Greathouse IV, Jun 19 2016

Formula

a(n) = 210 * A002473(n). - David A. Corneth, May 14 2019
Sum_{n>=1} 1/a(n) = 1/48. - Amiram Eldar, Nov 12 2020

A051664 a(n) is the number of nonzero coefficients in the n-th cyclotomic polynomial.

Original entry on oeis.org

2, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 7, 2, 17, 3, 19, 5, 9, 11, 23, 3, 5, 13, 3, 7, 29, 7, 31, 2, 15, 17, 17, 3, 37, 19, 17, 5, 41, 9, 43, 11, 7, 23, 47, 3, 7, 5, 23, 13, 53, 3, 17, 7, 25, 29, 59, 7, 61, 31, 9, 2, 31, 15, 67, 17, 31, 17, 71, 3, 73, 37, 7, 19, 31, 17, 79, 5, 3
Offset: 1

Views

Author

Keywords

Comments

a(n)=p(n) if n=p(n); a(n) is not always A006530(n). - Labos Elemer, May 03 2002
This sequence is the Mobius transform of A087073. Let m be the squarefree part of n, then a(n) = a(m). When n = pq, the product of two distinct odd primes, then there is a formula for a(pq). Let x = 1/p (mod q) and y = 1/q (mod p). Then a(pq) = 2xy-1. There are also formulas for the number of positive and negative terms. See papers by Carlitz or Lam and Leung. - T. D. Noe, Aug 08 2003

Examples

			9th cyclotomic polynomial is x^6+x^3+1 which has 3 terms, so a(9)=3.
		

Crossrefs

Cf. A086765 (number of positive terms in n-th cyclotomic polynomial), A086780 (number of negative terms in n-th cyclotomic polynomial), A086798 (number of zero terms in n-th cyclotomic polynomial), A087073.

Programs

  • Maple
    A051664 := proc(n)
            numtheory[cyclotomic](n,x) ;
            nops([coeffs(%)]) ;
    end proc: # R. J. Mathar, Sep 15 2012
  • Mathematica
    Table[Count[CoefficientList[Cyclotomic[n, x], x], _?(#!=0&)], {n, 0, 100}]
    Table[Length[Cyclotomic[n, x]], {n, 1, 100}] (* Artur Jasinski, Jan 15 2007 *)
  • PARI
    a(n)=sum(k=0,eulerphi(n),if(polcoeff(polcyclo(n),k),1,0))
    
  • PARI
    a(n) = #select(x->x!=0, Vec(polcyclo(n))); \\ Michel Marcus, Mar 05 2017

Formula

a(n) = phi(n) + 1 - A086798(n). - T. D. Noe, Aug 08 2003

Extensions

More terms from Labos Elemer, May 03 2002

A288162 Numbers whose prime factors are 2 and 13.

Original entry on oeis.org

26, 52, 104, 208, 338, 416, 676, 832, 1352, 1664, 2704, 3328, 4394, 5408, 6656, 8788, 10816, 13312, 17576, 21632, 26624, 35152, 43264, 53248, 57122, 70304, 86528, 106496, 114244, 140608, 173056, 212992, 228488, 281216, 346112, 425984, 456976, 562432, 692224, 742586, 851968, 913952
Offset: 1

Views

Author

Bernard Schott, Jun 06 2017

Keywords

Comments

Numbers k such that phi(k)/k = 6/13.

Crossrefs

Programs

  • Magma
    [n:n in [1..100000] | Set(PrimeDivisors(n)) eq {2,13}];  // Marius A. Burtea, May 10 2019
  • Mathematica
    Select[Range[920000],FactorInteger[#][[All,1]]=={2,13}&] (* Harvey P. Dale, Jun 18 2021 *)
  • PARI
    is(n) = factor(n)[, 1]~==[2, 13] \\ Felix Fröhlich, Jun 06 2017
    
  • PARI
    list(lim)=my(v=List(),t); for(n=1,logint(lim\2,13), t=13^n; while((t<<=1)<=lim, listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jun 11 2017
    

Formula

a(n) = 26 * A107326(n). - David A. Corneth, Jun 06 2017
Sum_{n>=1} 1/a(n) = 1/12. - Amiram Eldar, Dec 22 2020

A086798 Number of coefficients equal to zero in n-th cyclotomic polynomial.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 2, 7, 0, 4, 0, 4, 4, 0, 0, 6, 16, 0, 16, 6, 0, 2, 0, 15, 6, 0, 8, 10, 0, 0, 8, 12, 0, 4, 0, 10, 18, 0, 0, 14, 36, 16, 10, 12, 0, 16, 24, 18, 12, 0, 0, 10, 0, 0, 28, 31, 18, 6, 0, 16, 14, 8, 0, 22, 0, 0, 34, 18, 30, 8, 0, 28, 52, 0, 0, 16, 24, 0, 18, 30, 0
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 05 2003

Keywords

References

Crossrefs

Cf. A051664 (number of nonzero terms in n-th cyclotomic polynomial).

Programs

  • Mathematica
    Table[Count[CoefficientList[Cyclotomic[n, x], x], _?(#==0&)], {n, 0, 100}]
  • PARI
    a(n)=sum(k=0,eulerphi(n),if(polcoeff(polcyclo(n),k),0,1))
    
  • PARI
    A086798(n) = (1 + eulerphi(n) - length(select(x->x!=0, Vec(polcyclo(n))))); \\ Antti Karttunen, Sep 21 2018

Formula

From Benoit Cloitre, Aug 06 2003: (Start)
a(4n+2) = a(2n+1); a(4n) = a(2n) + phi(2n).
When p is an odd prime and m integer >= 1: a(p^m) = a(2*p^m) = p^m - p^(m-1) - p + 1. In particular a(p) = a(2p) = 0. (End)
a(n) = 1 + phi(n) - A051664(n). - T. D. Noe, Aug 08 2003

Extensions

More terms from Benoit Cloitre and T. D. Noe, Aug 06 2003

A085900 Numbers k such that k-th cyclotomic polynomial has exactly 3 negative coefficients.

Original entry on oeis.org

14, 15, 28, 30, 45, 56, 60, 75, 90, 98, 112, 120, 135, 150, 180, 196, 224, 225, 240, 270, 300, 360, 375, 392, 405, 448, 450, 480, 540, 600, 675, 686, 720, 750, 784, 810, 896, 900, 960, 1080, 1125, 1200, 1215, 1350, 1372, 1440, 1500, 1568, 1620, 1792, 1800, 1875
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 16 2003

Keywords

Crossrefs

Programs

Extensions

More terms from Paolo P. Lava, Oct 26 2017
Showing 1-6 of 6 results.