cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A006254 Numbers k such that 2k-1 is prime.

Original entry on oeis.org

2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 27, 30, 31, 34, 36, 37, 40, 42, 45, 49, 51, 52, 54, 55, 57, 64, 66, 69, 70, 75, 76, 79, 82, 84, 87, 90, 91, 96, 97, 99, 100, 106, 112, 114, 115, 117, 120, 121, 126, 129, 132, 135, 136, 139, 141, 142, 147, 154, 156, 157
Offset: 1

Views

Author

Keywords

Comments

a(n) is the inverse of 2 modulo prime(n) for n >= 2. - Jean-François Alcover, May 02 2017
The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
Positions of prime numbers among odd numbers. - Zak Seidov, Mar 26 2013
Also, the integers remaining after removing every third integer following 2, and, recursively, removing every p-th integer following the next remaining entry (where p runs through the primes, beginning with 5). - Pete Klimek, Feb 10 2014
Also, numbers k such that k^2 = m^2 + p, for some integers m and every prime p > 2. Applicable m values are m = k - 1 (giving p = 2k - 1). Less obvious is: no solution exists if m equals any value in A047845, which is the complement of (A006254 - 1). - Richard R. Forberg, Apr 26 2014
If you define a different type of multiplication (*) where x (*) y = x * y + (x - 1) * (y - 1), (which has the commutative property) then this is the set of primes that follows. - Jason Atwood, Jun 16 2019

Crossrefs

Equals A005097 + 1. A130291 is an essentially identical sequence.
Cf. A065091.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: this seq(k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

a(n) = (A000040(n+1) + 1)/2 = A067076(n-1) + 2 = A086801(n-1)/2 + 2.
a(n) = (1 + A065091(n))/2. - Omar E. Pol, Nov 10 2007
a(n) = sqrt((A065091^2 + 2*A065091+1)/4). - Eric Desbiaux, Jun 29 2009
a(n) = A111333(n+1). - Jonathan Sondow, Jan 20 2016

Extensions

More terms from Erich Friedman
More terms from Omar E. Pol, Nov 10 2007

A067076 Numbers k such that 2*k + 3 is a prime.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 22, 25, 28, 29, 32, 34, 35, 38, 40, 43, 47, 49, 50, 52, 53, 55, 62, 64, 67, 68, 73, 74, 77, 80, 82, 85, 88, 89, 94, 95, 97, 98, 104, 110, 112, 113, 115, 118, 119, 124, 127, 130, 133, 134, 137, 139, 140, 145, 152, 154, 155
Offset: 1

Views

Author

David Williams, Aug 17 2002

Keywords

Comments

The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
n is in the sequence iff none of the numbers (n-3k)/(2k+1), 1 <= k <= (n-1)/5, is positive integer. - Vladimir Shevelev, May 31 2009
Zeta(s) = Sum_{n>=1} 1/n^s = 1/1 - 2^(-s) * Product_{p=prime=(2*A067076)+3} 1/(1 - (2*A067076+3)^(-s)). - Eric Desbiaux, Dec 15 2009
This sequence is a subsequence of A047949. - Jason Kimberley, Aug 30 2012

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), this seq(k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19). - Jason Kimberley, Sep 07 2012
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

a(n) = A006254(n) - 2 = A086801(n+1)/2. [Corrected by M. F. Hasler, Feb 14 2024]
a(n) = A089253(n) - 4. - Giovanni Teofilatto, Dec 14 2003
Conjecture: a(n) = A008507(n) + n - 1 = A005097(n) - 1 = A102781(n+1) - 1. - R. J. Mathar, Jul 07 2009
a(n) = A179893(n) - A000040(n). - Odimar Fabeny, Aug 24 2010

Extensions

Offset changed from 0 to 1 in 2008: some formulas here and elsewhere may need to be corrected.

A098090 Numbers k such that 2k-3 is prime.

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 13, 16, 17, 20, 22, 23, 25, 28, 31, 32, 35, 37, 38, 41, 43, 46, 50, 52, 53, 55, 56, 58, 65, 67, 70, 71, 76, 77, 80, 83, 85, 88, 91, 92, 97, 98, 100, 101, 107, 113, 115, 116, 118, 121, 122, 127, 130, 133, 136, 137, 140, 142, 143, 148, 155, 157, 158
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 14 2004

Keywords

Comments

Supersequence of A063908.
Left edge of the triangle in A065305. - Reinhard Zumkeller, Jan 30 2012

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), this sequence (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

Half of p + 3, where p is a prime greater than 2.
A122845(a(n), 3) = 3; a(n) = A113935(n+1)/2. - Reinhard Zumkeller, Sep 14 2006

A097069 Positive integers n such that 2n - 9 is prime.

Original entry on oeis.org

6, 7, 8, 10, 11, 13, 14, 16, 19, 20, 23, 25, 26, 28, 31, 34, 35, 38, 40, 41, 44, 46, 49, 53, 55, 56, 58, 59, 61, 68, 70, 73, 74, 79, 80, 83, 86, 88, 91, 94, 95, 100, 101, 103, 104, 110, 116, 118, 119, 121, 124, 125, 130, 133, 136, 139, 140, 143, 145, 146, 151, 158, 160
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 15 2004

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), this seq(k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

Half of p+9 where p is a prime greater than 2.

A172367 Numbers k > 0 such that k+4 is a prime.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 25, 27, 33, 37, 39, 43, 49, 55, 57, 63, 67, 69, 75, 79, 85, 93, 97, 99, 103, 105, 109, 123, 127, 133, 135, 145, 147, 153, 159, 163, 169, 175, 177, 187, 189, 193, 195, 207, 219, 223, 225, 229, 235, 237, 247, 253, 259, 265, 267, 273, 277, 279
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 01 2010

Keywords

Comments

The subsequence of primes A023200 consists of the smallest primes p of cousin prime pairs (p, p+4), while the subsequence of nonprimes is A164384. - Bernard Schott, Oct 19 2021

Examples

			a(1) = 5 - 4 = 1, a(2) = 7 - 4 = 3.
		

Crossrefs

Programs

Formula

a(n) = prime(n+2) - 4.

A175222 a(n) = prime(n) + 5.

Original entry on oeis.org

7, 8, 10, 12, 16, 18, 22, 24, 28, 34, 36, 42, 46, 48, 52, 58, 64, 66, 72, 76, 78, 84, 88, 94, 102, 106, 108, 112, 114, 118, 132, 136, 142, 144, 154, 156, 162, 168, 172, 178, 184, 186, 196, 198, 202, 204, 216, 228, 232, 234, 238, 244, 246, 256, 262, 268, 274, 276
Offset: 1

Views

Author

Jaroslav Krizek, Mar 06 2010

Keywords

Comments

a(n) = A000040(n) + 5 = A008864(n) + 4 = A052147(n) + 3 = A113395(n) + 2 = A175221 (n) + 1 = A139049(n) - 1 = A175223(n) - 2 = A175224(n) - 3 = A140353(n) - 4 = A175225(n) - 5.

Crossrefs

Programs

Extensions

More terms from Vincenzo Librandi, Mar 14 2010

A244798 Number of moduli m such that (prime(n) mod m) = 3.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 2, 3, 4, 2, 4, 2, 2, 6, 4, 4, 6, 2, 5, 4, 6, 4, 8, 2, 2, 4, 7, 6, 2, 6, 4, 6, 2, 6, 2, 4, 6, 10, 4, 6, 8, 2, 4, 6, 2, 7, 8, 10, 10, 2, 6, 4, 6, 6, 2, 10, 6, 4, 2, 2, 14, 6, 8, 10, 6, 2, 6, 2, 6, 2, 10, 4, 10, 6, 6, 10, 2, 2, 2, 6, 10, 6, 4
Offset: 1

Views

Author

Clark Kimberling, Jul 06 2014

Keywords

Comments

Except for the initial 0, 0, 0, this is column 3 of the array at A244740.

Examples

			prime(5) = 11 = (2 mod m) for m = 3, 9 so that a(5) = 2.
		

Crossrefs

Programs

  • Mathematica
    z = 300; f[n_, m_] := If[Mod[Prime[n], m] == 3, 1, 0];
    t = Table[f[n, m], {n, 1, z}, {m, 1, Prime[n]}];
    Table[Count[t[[k]], 1], {k, 1, z}] (* A244798 *)

Formula

a(n) = A070824(A086801(n)), for n > 2. - Ridouane Oudra, Mar 17 2024

A190136 Largest prime factor of n*(n+1)*(n+2)*(n+3).

Original entry on oeis.org

3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 13, 13, 29, 29, 31, 31, 31, 31, 17, 17, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 47, 47, 17, 17, 53, 53, 53, 53, 19, 29, 59, 59, 61, 61, 61, 61, 31, 13, 67, 67, 67
Offset: 1

Views

Author

Reinhard Zumkeller, May 07 2011

Keywords

Comments

a(n) > 11 for n > 9;
a(A086801(n)) = A000040(n) for n > 2.
It follows from Størmer's theorem that lim inf a(n) = infinity, and in fact a(n) >> log log n. - Charles R Greathouse IV, Feb 19 2013

Examples

			Numbers m <= 10^6 such that a(m) = p:
p=13: 10, 11, 12, 13, 24, 25, 63;
p=17: 14, 15, 32, 33, 48, 49;
p=19: 16, 17, 18, 19, 54, 75, 168;
p=23: 20, 21, 22, 23, 207, 322;
p=29: 26, 27, 55, 114;
p=31: 28, 29, 30, 31, 62, 90, 152, 153, 340, 493, 1518;
p=37: 34, 35, 36, 37, 74, 184, 405;
p=41: 38, 39, 123, 245, 285, 286, 287, 492, 1023, 1517, 1680;
p=43: 40, 41, 42, 43, 84, 85, 169, 258, 341, 342, 558, 1330, 1331, 2106, 5289, 10878;
p=47: 44, 45, 46, 47, 91, 92, 93, 185, 186, 187, 374, 375, 702, 986, 987, 17575;
p=53: 50, 51, 52, 53, 159, 368, 369, 527, 845, 899, 900, 1375;
p=59: 56, 57, 115, 116, 117, 118, 174, 294, 528, 529, 530, 648, 943, 1885, 6783;
p=61: 58, 59, 60, 61, 119, 120, 121, 122, 182, 183, 242, 243, 244, 549, 608, 609, 1034, 1218, 1219, 1767, 1768, 2013, 2254, 2622;
p=67: 64, 65, 66, 67, 132, 133, 735, 1271, 1272, 1273, 2208, 2277, 3885, 4958, 5828, 5829;
p=71: 68, 69, 140, 141, 142, 284, 423, 424, 494, 636, 637, 779, 780, 781, 3477, 3478, 3549, 3550, 4899;
p=73: 70, 71, 72, 73, 143, 144, 145, 219, 363, 510, 728, 729, 803, 1022, 1239, 1679, 2772, 70224;
p=79: 76, 77, 78, 79, 158, 234, 235, 472, 473, 474, 550, 867, 868, 1024, 1104, 1419, 2209, 2448, 2923, 3476, 3869, 4898, 5290, 7502, 46136, 70150;
p=83: 80, 81, 82, 83, 246, 247, 413, 495, 663, 664, 1078, 1159, 1824, 2736, 3483, 4232, 4896, 4897, 7137, 8214, 12614, 36517, 97524;
p=89: 86, 87, 88, 89, 175, 264, 265, 354, 531, 710, 711, 712, 798, 1245, 1332, 2847, 4895, 5073, 6318, 18423, 28302, 29279;
p=97: 94, 95, 96, 97, 288, 289, 483, 580, 581, 582, 774, 873, 1064, 1065, 1455, 2132, 2133, 3007, 3975, 4556, 4557, 6496, 6497, 6887, 7564, 7565, 7566, 13869, 17457.
		

References

  • Paulo Ribenboim, Galimatias Arithmeticae (Chap 11), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 345.
  • J. J. Sylvester, "On arithmetical series", Messenger of Mathematics 21 (1892), pp. 1-19 and 87-120.
  • M. Faulkner, "On a theorem of Sylvester and Schur", J. London Math. Soc. 41:1 (1966), pp. 107-110.

Crossrefs

Programs

  • Haskell
    a190136 n = maximum $ map a006530 [n..n+3]
    
  • Mathematica
    Table[FactorInteger[Times@@(n+Range[0,3])][[-1,1]],{n,70}] (* Harvey P. Dale, Mar 19 2018 *)
  • PARI
    gpf(n)=vecmax(factor(n)[,1])
    a(n)=my(p=precprime(n+3));if(pCharles R Greathouse IV, Feb 19 2013

Formula

a(n) = max{gpf(n), gpf(n+1), gpf(n+2), gpf(n+3)} = gpf(A052762(n+3)) with gpf = A006530, greatest prime factor.
a(n) > 47 for n > 17575. - Charles R Greathouse IV, Feb 19 2013

A144842 Numbers k such that the three numbers k+3, k-3 and k+5 are all prime.

Original entry on oeis.org

8, 14, 26, 56, 104, 134, 176, 194, 236, 266, 566, 596, 656, 824, 1016, 1226, 1286, 1484, 1604, 1616, 1874, 2084, 2336, 2546, 2966, 3254, 3326, 3464, 3536, 3764, 3914, 3926, 4016, 4214, 4256, 4646, 4796, 5006, 5276, 5474, 5654, 5846, 5864, 6266, 6356, 6566
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 22 2008

Keywords

Comments

Subset of A087695. - R. J. Mathar, Sep 24 2008

Crossrefs

Programs

  • Mathematica
    Select[Range[7000], And @@ PrimeQ[# + {-3, 3, 5}] &] (* Amiram Eldar, Apr 14 2022 *)
  • Python
    from sympy import isprime
    def ok(n): return n > 4 and isprime(n-3) and isprime(n+3) and isprime(n+5)
    print(list(filter(ok, range(6567)))) # Michael S. Branicky, Aug 14 2021

Formula

a(n) = A046138(n) + 3. - R. J. Mathar, Sep 24 2008

Extensions

Definition edited and extended by R. J. Mathar, Sep 24 2008

A154115 Numbers n such that n + 3 is prime.

Original entry on oeis.org

0, 2, 4, 8, 10, 14, 16, 20, 26, 28, 34, 38, 40, 44, 50, 56, 58, 64, 68, 70, 76, 80, 86, 94, 98, 100, 104, 106, 110, 124, 128, 134, 136, 146, 148, 154, 160, 164, 170, 176, 178, 188, 190, 194, 196, 208, 220, 224, 226, 230, 236, 238, 248, 254, 260, 266, 268, 274, 278
Offset: 1

Views

Author

Keywords

Examples

			a(2) = 2 since (2 + 2)^2 - (2 + 1)^2 - 2 = 5.
		

Crossrefs

Cf. A067076 (a(n-1)/2).

Programs

  • Magma
    [n: n in [0..500] | IsPrime((n+2)^2-(n+1)^2-n)]; // Vincenzo Librandi, Nov 26 2010
    
  • Maple
    A154115 := proc(n) ithprime(n+1)-3 ; end proc: # R. J. Mathar, May 09 2010
  • Mathematica
    a[n_]:=(n+2)^2-(n+1)^2-n;lst={};Do[If[PrimeQ[a[n]],AppendTo[lst,n]],{n,6!}];lst
    Select[Range[0,300],PrimeQ[(#+2)^2-(#+1)^2-#]&] (* Harvey P. Dale, Nov 06 2013 *)
    Prime[Range[2,100]]-3 (* Harvey P. Dale, Jul 15 2017 *)
  • PARI
    is(n)=isprime(n+3) \\ Charles R Greathouse IV, Sep 02 2016

Formula

a(n) = A086801(n+1). - R. J. Mathar, May 09 2010

Extensions

New name based on a comment by Franklin T. Adams-Watters, Jan 30 2009
Showing 1-10 of 18 results. Next