cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A089302 Triangle read by rows in which each row is the inverse binomial transform of a diagonal of A089246.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 14, 36, 32, 11, 1, 43, 137, 164, 89, 20, 1, 144, 551, 835, 627, 235, 37, 1, 523, 2346, 4320, 4166, 2210, 610, 70, 1, 2048, 10568, 22980, 27178, 18764, 7494, 1582, 135, 1, 8597, 50265, 126352, 177590, 151722, 79948, 25004, 4135, 264, 1
Offset: 1

Views

Author

Alford Arnold, Dec 24 2003

Keywords

Examples

			The fifth antidiagonal is ( 14 36 32 11 1) which generates 14 50 118 229 395 629 ... by way of the binomial transform.
Array begins
1 1 1 1 1 ...
1 3 6 11 ...
2 10 32 ...
5 36 ...
14 ...
The fifth row is 14,36,32,11,1. Its binomial transform is 14,50,118,229,395,629... which is a diagonal of A089246.
		

Extensions

More terms from David Wasserman, Sep 07 2005

A112508 Counts the objects described in A047969 and A089246 when grouped by minimum part. (Row sums give A047970).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 3, 9, 1, 1, 3, 9, 29, 1, 1, 3, 9, 29, 101
Offset: 1

Views

Author

Alford Arnold, Sep 08 2005

Keywords

Examples

			Row 4 of the triangular array is (1 1 3 9) because there are nine tuples with a minimum value of 1, three tuples with a minimum value of 2, one tuple with a minimum value of 3 and one tuple with a minimum value of 4; the relevant unordered partitions are illustrated in the below Gaussian polynomial template:
4
31 32 33
211 221 222
1111
		

Crossrefs

A047970 Antidiagonal sums of nexus numbers (A047969).

Original entry on oeis.org

1, 2, 5, 14, 43, 144, 523, 2048, 8597, 38486, 182905, 919146, 4866871, 27068420, 157693007, 959873708, 6091057009, 40213034874, 275699950381, 1959625294310, 14418124498211, 109655727901592, 860946822538675, 6969830450679864, 58114638923638573
Offset: 0

Views

Author

Alford Arnold, Dec 11 1999

Keywords

Comments

From Lara Pudwell, Oct 23 2008: (Start)
A permutation p avoids a pattern q if it has no subsequence that is order-isomorphic to q. For example, p avoids the pattern 132 if it has no subsequence abc with a < c < b.
Barred pattern avoidance considers permutations that avoid a pattern except in a special case. Given a barred pattern q, we may form two patterns, q1 = the sequence of unbarred letters of q and q2 = the sequence of all letters of q.
A permutation p avoids barred pattern q if every instance of q1 in p is embedded in a copy of q2 in p. In other words, p avoids q1, except in the special case that a copy of q1 is a subsequence of a copy of q2.
For example, if q=5{bar 1}32{bar 4}, then q1=532 and q2 = 51324. p avoids q if every for decreasing subsequence acd of length 3 in p, one can find letters b and e so that the subsequence abcde of p has b < d < c < e < a. (End)
Number of ordered factorizations over the Gaussian polynomials.
Apparently, also the number of permutations in S_n avoiding {bar 3}{bar 1}542 (i.e., every occurrence of 542 is contained in an occurrence of a 31542). - Lara Pudwell, Apr 25 2008
With offset 1, apparently the number of sequences {b(m)} of length n of positive integers with b(1) = 1 and, for all m > 1, b(m) <= max{b(m-1) + 1, max{b(i) | 1 <= i <= m - 1}}. This sequence begins 1, 2, 5, 14, 43, 144, 523, 2048, 8597, 38486. The term 144 counts the length 6 sequence 1, 2, 3, 1, 1, 3, for instance. Contrast with the families of sequences discussed in Franklin T. Adams-Watters's comment in A005425. - Rick L. Shepherd, Jan 01 2015
a(n-1) for n >= 1 is the number of length-n restricted growth strings (RGS) [s(0), s(1), ..., s(n-1)] with s(0)=0 and s(k) <= the number of fixed points in the prefix, see example. - Joerg Arndt, Mar 08 2015
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) = e(k). [Martinez and Savage, 2.15] - Eric M. Schmidt, Jul 17 2017
a(n) counts all positive-integer m-tuples whose maximum is n-m+2. - Mathew Englander, Feb 28 2021
a(n) counts the cyclic permutations of [n+2] that avoid the vincular pattern 12-3-4, i.e., the pattern 1234 where the 1 and 2 are required to be adjacent. - Rupert Li, Jul 27 2021

Examples

			a(3) = 1 + 5 + 7 + 1 = 14.
From _Paul D. Hanna_, Jul 22 2014:  (Start)
G.f. A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 43*x^4 + 144*x^5 + 523*x^6 + 2048*x^7 + ...
where we have the series identity:
A(x) = (1-x)*( 1/(1-2*x) + x/(1-3*x) + x^2/(1-4*x) + x^3/(1-5*x) + x^4/(1-6*x) + x^5/(1-7*x) + x^6/(1-8*x) + ...)
is equal to
A(x) = 1/(1-x) + x/((1-x)*(1-2*x)) + x^2/((1-2*x)*(1-3*x)) + x^3/((1-3*x)*(1-4*x)) + x^4/((1-4*x)*(1-5*x)) + x^5/((1-5*x)*(1-6*x)) + x^6/((1-6*x)*(1-7*x)) + ...
and also equals
A(x) = 1/((1-x)*(1+x)) + 2!*x/((1-x)^2*(1+x)*(1+2*x)) + 3!*x^2/((1-x)^3*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
(End)
From _Joerg Arndt_, Mar 08 2015: (Start)
There are a(4-1)=14 length-4 RGS as in the comment (dots denote zeros):
01:  [ . . . . ]
02:  [ . . . 1 ]
03:  [ . . 1 . ]
04:  [ . . 1 1 ]
05:  [ . 1 . . ]
06:  [ . 1 . 1 ]
07:  [ . 1 . 2 ]
08:  [ . 1 1 . ]
09:  [ . 1 1 1 ]
10:  [ . 1 1 2 ]
11:  [ . 1 2 . ]
12:  [ . 1 2 1 ]
13:  [ . 1 2 2 ]
14:  [ . 1 2 3 ]
(End)
		

Crossrefs

Antidiagonal sums of A085388 (beginning with the second antidiagonal) and A047969.
Partial sums are in A026898, A003101. First differences A112532.

Programs

  • Maple
    T := proc(n, k) option remember; local j;
        if k=n then 1
      elif k>n then 0
      else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)
        fi end:
    A047970 := n -> T(n,0);
    seq(A047970(n), n=0..24); # Peter Luschny, May 14 2014
  • Mathematica
    a[ n_] := SeriesCoefficient[ ((1 - x) Sum[ x^k / (1 - (k + 2) x), {k, 0, n}]), {x, 0, n}]; (* Michael Somos, Jul 09 2014 *)
  • PARI
    /* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
    {a(n)=polcoeff( sum(m=0, n, (m+1)!*x^m/(1-x)^(m+1)/prod(k=1, m+1, 1+k*x +x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* From o.g.f. (Paul D. Hanna, Jul 22 2014) */
    {a(n)=polcoeff( sum(m=0, n, x^m/((1-m*x)*(1-(m+1)*x +x*O(x^n)))), n)}
    for(n=0, 25, print1(a(n), ", "))
  • Sage
    def A074664():
        T = []; n = 0
        while True:
            T.append(1)
            yield T[0]
            for k in (0..n):
                T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))
            n += 1
    a = A074664()
    [next(a) for n in range(25)] # Peter Luschny, May 13 2014
    

Formula

Formal o.g.f.: (1 - x)*( Sum_{n >= 0} x^n/(1 - (n + 2)*x) ). - Peter Bala, Jul 09 2014
O.g.f.: Sum_{n>=0} (n+1)! * x^n/(1-x)^(n+1) / Product_{k=1..n+1} (1 + k*x). - Paul D. Hanna, Jul 20 2014
O.g.f.: Sum_{n>=0} x^n / ( (1 - n*x) * (1 - (n+1)*x) ). - Paul D. Hanna, Jul 22 2014
From Mathew Englander, Feb 28 2021: (Start)
a(n) = A089246(n+2,0) = A242431(n,0).
a(n) = Sum_{m = 1..n+1} Sum_{i = 0..m-1} binomial(m,i) * (n-m+1)^i.
a(n) = 1 + Sum_{i = 0..n} i * (i+1)^(n-i). (End)
a(n) ~ sqrt(2*Pi*n / (w*(1+w))) * (1 + n/w)^(1 + n - n/w), where w = LambertW(exp(1)*n). - Vaclav Kotesovec, Jun 10 2025

A101494 Triangle, read by rows, where T(n,k) = Sum_{j=0..n-k-1} C(j+k,j)*T(n-1,j+k) for n>k>=0 with T(n,n)=1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 8, 4, 1, 1, 23, 23, 13, 5, 1, 1, 66, 73, 44, 19, 6, 1, 1, 210, 253, 162, 73, 26, 7, 1, 1, 733, 948, 643, 302, 111, 34, 8, 1, 1, 2781, 3817, 2724, 1337, 506, 159, 43, 9, 1, 1, 11378, 16433, 12259, 6266, 2457, 788, 218, 53, 10, 1, 1, 49864, 75295
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2005

Keywords

Comments

Column 0 equals row sums (A026898) shift right.
T(n,k) is the number of m-tuples of nonnegative integers satisfying these two criteria: (i) there are exactly k 0’s, and (ii) the remaining m-k elements are positive integers less than or equal to n-m. - Mathew Englander, Feb 25 2021

Examples

			4th row sum = 23 = (5-0)^0+(5-1)^1+(5-2)^2+(5-3)^3+(5-4)^4.
5th row sum = 66 = (6-0)^0+(6-1)^1+(6-2)^2+(6-3)^3+(6-4)^4+(6-5)^5.
T(6,0) = 66 = 1*23 + 1*23 + 1*13 + 1*5 + 1*1 + 1*1.
T(6,1) = 73 = 1*23 + 2*13 + 3*5 + 4*1 + 5*1.
T(6,2) = 44 = 1*13 + 3*5 + 6*1 + 10*1.
Rows begin:
1;
1, 1;
2, 1, 1;
4, 3, 1, 1;
9, 8, 4, 1, 1;
23, 23, 13, 5, 1, 1;
66, 73, 44, 19, 6, 1, 1;
210, 253, 162, 73, 26, 7, 1, 1;
733, 948, 643, 302, 111, 34, 8, 1, 1;
2781, 3817, 2724, 1337, 506, 159, 43, 9, 1, 1;
11378, 16433, 12259, 6266, 2457, 788, 218, 53, 10, 1, 1;
49864, 75295, 58423, 30953, 12558, 4147, 1163, 289, 64, 11, 1, 1;
232769, 365600, 293902, 160823, 67259, 22878, 6574, 1647, 373, 76, 12, 1, 1; ...
		

Crossrefs

Cf. A101495, A026898, A089246 (first differences by column), A304357 (antidiagonal sums, empirically), A034856 (fourth diagonal).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Sum([0..n-k],j->Binomial(j+k,j)*(n-k-j)^j)))); # Muniru A Asiru, Mar 07 2019
  • PARI
    T(n,k)=if(n
    				
  • PARI
    T(n,k)=polcoeff(sum(m=0,n-k, x^m/(1-m*x +x*O(x^(n-k)))^(k+1)),n-k)
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Mar 06 2013
    

Formula

T(n,0) = A026898(n-1).
T(n,k) = Sum_{j=0..n-k} binomial(j+k,j)*(n-k-j)^j. - Vladeta Jovovic, Sep 07 2006
G.f.: A(x,y) = Sum_{n>=0} Sum_{k>=0} x^(n+k)*y^k / (1 - n*x)^(k+1). - Paul D. Hanna, Mar 06 2013
From Mathew Englander, Feb 25 2021: (Start)
G.f. of row n: Sum_{i=0..n} (x+n-i)^i.
T(n,k) = Sum_{j=k..n} A089246(j,k).
Antidiagonal sums: Sum_{j = 0..n} Sum_{i = j..floor((n+j)/2)} binomial(i,j)*(n+j-2*i)^j. (End)

A112532 First differences of [0, A047970].

Original entry on oeis.org

1, 1, 3, 9, 29, 101, 379, 1525, 6549, 29889, 144419, 736241, 3947725, 22201549, 130624587, 802180701, 5131183301, 34121977865, 235486915507, 1683925343929, 12458499203901, 95237603403381, 751291094637083, 6108883628141189, 51144808472958709, 440444879385258001
Offset: 0

Views

Author

Alford Arnold, Sep 10 2005

Keywords

Comments

Number of sequences of length n in [n] (endofunctions) whose first run has length equal to the maximum of the sequence.

Examples

			The 9 sequences for n=4 (sorted by maximum)
1121,1122,2211,2212, 1113,2223,3331,3332, 4444
The 29 sequences for n=5 (sorted by maximum)
11211,11212,11221,11222, 22111,22112,22121,22122, 11123,11131,11132,11133, 22213,22231,22232,22233, 33311,33312,33313,33321,33322,33323, 11114, 22224, 33334, 44441,44442,44443, 55555
		

Crossrefs

First differences of column 0 of triangle A089246 (beginning at row 1). With offset 1, first differences of column 0 of triangle A242431. Second differences of column 0 of triangle A101494.

Programs

  • Mathematica
    a[n_]:= If[n==0, 1, n + Sum[(i-1)^2*i^(n-i), {i,0,n}]];
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 12 2022 *)
  • PARI
    a(n) = n + sum(i = 0, n, (n-i-1)^2 * (n-i)^i); \\ Michel Marcus, Mar 01 2021
    
  • Sage
    [n +sum((j-1)^2*j^(n-j) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jan 12 2022

Formula

G.f.: (1-x)^2*( Sum_{n >= 0} x^n/(1 - (n+2)*x) ). - Peter Bala, Jul 09 2014
From Mathew Englander, Feb 28 2021: (Start)
a(n) = A089246(n+2,0) - A089246(n+1,0).
a(n) = n + Sum_{i = 0..n} (n-i-1)^2 * (n-i)^i. (End)

Extensions

Corrected by D. S. McNeil, Aug 20 2010
Combinatorial interpretation and examples by Olivier Gérard, Jan 29 2023

A101495 Column 1 of triangle A101494.

Original entry on oeis.org

1, 1, 3, 8, 23, 73, 253, 948, 3817, 16433, 75295, 365600, 1874083, 10108025, 57194585, 338615084, 2092609701, 13470059649, 90137761867, 625940219896, 4503468629391, 33520255302185, 257764170849941, 2045255722438180
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2005

Keywords

Comments

a(n) is the number of m-tuples of nonnegative integers in which n-m+1 is the maximum and appears exactly once. - Mathew Englander, Apr 11 2021

Crossrefs

Cf. A101494.

Programs

  • GAP
    List([0..30],n->Sum([0..n],k->(k+1)*(n-k)^k)); # Muniru A Asiru, Mar 05 2019
    
  • Magma
    [(&+[(k+1)*(n-k)^k: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Mar 05 2019
    
  • Mathematica
    Join[{1},Table[Sum[(k+1)(n-k)^k,{k,0,n}],{n,30}]] (* Harvey P. Dale, Mar 04 2013 *)
  • PARI
    a(n) = sum(k=0, n, (k+1)*(n-k)^k); \\ Michel Marcus, Mar 05 2019
    
  • Sage
    [sum((k+1)*(n-k)^k for k in (0..n)) for n in (0..30)] # G. C. Greubel, Mar 05 2019

Formula

From Vladeta Jovovic, Sep 07 2006: (Start)
a(n) = Sum_{k=0..n} (k+1)*(n-k)^k.
G.f.: Sum_{k>=0} x^k/(1-k*x)^2. (End)

A112531 Triangle read by rows which lists compositions having at least one part equal to 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 3, 1, 2, 3, 6, 4, 3, 6, 4, 1, 2, 3, 6, 4, 6, 12, 12, 5, 3, 6, 12, 10, 4, 10, 5, 1, 2, 3, 6, 4, 6, 12, 12, 5, 6, 12, 24, 20, 12, 30, 20, 6, 3, 6, 12, 10, 12, 30, 30, 15, 4, 10, 20, 20, 5, 15, 6, 1
Offset: 1

Views

Author

Alford Arnold, Sep 10 2005

Keywords

Comments

Consider partitions listed in the order given by A241596 and A242628. Omit any partition not containing 1 as a part. Write down the number of compositions (= ordered partitions) corresponding to this partition.
Row sums give A112532; which are the first differences of A047970.
Row lengths give A011782.

Examples

			The partitions (see A241596) begin 1 2 11 3 22 21 111 4 33 32 222 31 221 211 1111 ...
After omitting partitions with no part equal to 1, we have
1 11 21 111 31 221 211 1111 ...
which give rise to 1 1 2 1 2 3 3 1 ... compositions.
The resulting triangle of compositions begins:
1;
1;
2, 1;
2, 3, 3, 1;
2, 3, 6, 4, 3, 6, 4, 1;
2, 3, 6, 4, 6, 12, 12, 5, 3, 6, 12, 10, 4, 10, 5, 1;
2, 3, 6, 4, 6, 12, 12, 5, 6, 12, 24, 20, 12, 30, 20, 6, 3, 6, 12, 10, 12, 30, 30, 15, 4, 10, 20, 20, 5, 15, 6, 1;
...
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, May 19 2014 based on postings to the Sequence Fans Mailing List by Peter Luschny, Jonas Wallgren, Arie Groeneveld, and Franklin T. Adams-Watters.

A242431 Triangle read by rows: T(n, k) = (k + 1)*T(n-1, k) + Sum_{j=k..n-1} T(n-1, j) for k < n, T(n, n) = 1. T(n, k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 14, 10, 4, 1, 43, 35, 17, 5, 1, 144, 128, 74, 26, 6, 1, 523, 491, 329, 137, 37, 7, 1, 2048, 1984, 1498, 730, 230, 50, 8, 1, 8597, 8469, 7011, 3939, 1439, 359, 65, 9, 1, 38486, 38230, 33856, 21568, 9068, 2588, 530, 82, 10, 1
Offset: 0

Views

Author

Peter Luschny, May 14 2014

Keywords

Examples

			0|    1;
1|    2,    1;
2|    5,    3,    1;
3|   14,   10,    4,   1;
4|   43,   35,   17,   5,   1;
5|  144,  128,   74,  26,   6,  1;
6|  523,  491,  329, 137,  37,  7, 1;
7| 2048, 1984, 1498, 730, 230, 50, 8, 1;
		

Crossrefs

Programs

  • Maple
    T := proc(n, k) option remember; local j;
        if k=n then 1
      elif k>n then 0
      else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)
        fi end:
    seq(print(seq(T(n,k), k=0..n)), n=0..7);
  • Sage
    def A242431_rows():
        T = []; n = 0
        while True:
            T.append(1)
            yield T
            for k in (0..n):
                T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))
            n += 1
    a = A242431_rows()
    for n in range(8): next(a)

Formula

T(n, 0) = A047970(n).
Sum_{k=0..n} T(n, k) = A112532(n+1).
From Mathew Englander, Feb 25 2021: (Start)
T(n,k) = 1 + Sum_{i = k+1..n} i*(i+1)^(n-i).
T(n,k) = T(n,k+1) + (k+1)*(k+2)^(n-k-1) for 0 <= k < n.
T(n,k) = T(n,k+1) + (k+2)*(T(n-1,k) - T(n-1,k+1)) for 0 <= k <= n-2.
T(n,k) = Sum_{i = 0..n-k} (k+2)^i*A089246(n-k,i).
Sum_{i = k..n} T(i,k) = Sum_{i = 0..n-k} (n+2-i)^i = Sum_{i = 0..n-k} A101494(n-k,i)*(k+2)^i. (End)
Showing 1-8 of 8 results.