A089302
Triangle read by rows in which each row is the inverse binomial transform of a diagonal of A089246.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 14, 36, 32, 11, 1, 43, 137, 164, 89, 20, 1, 144, 551, 835, 627, 235, 37, 1, 523, 2346, 4320, 4166, 2210, 610, 70, 1, 2048, 10568, 22980, 27178, 18764, 7494, 1582, 135, 1, 8597, 50265, 126352, 177590, 151722, 79948, 25004, 4135, 264, 1
Offset: 1
The fifth antidiagonal is ( 14 36 32 11 1) which generates 14 50 118 229 395 629 ... by way of the binomial transform.
Array begins
1 1 1 1 1 ...
1 3 6 11 ...
2 10 32 ...
5 36 ...
14 ...
The fifth row is 14,36,32,11,1. Its binomial transform is 14,50,118,229,395,629... which is a diagonal of A089246.
A112508
Counts the objects described in A047969 and A089246 when grouped by minimum part. (Row sums give A047970).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 3, 9, 1, 1, 3, 9, 29, 1, 1, 3, 9, 29, 101
Offset: 1
Row 4 of the triangular array is (1 1 3 9) because there are nine tuples with a minimum value of 1, three tuples with a minimum value of 2, one tuple with a minimum value of 3 and one tuple with a minimum value of 4; the relevant unordered partitions are illustrated in the below Gaussian polynomial template:
4
31 32 33
211 221 222
1111
A047970
Antidiagonal sums of nexus numbers (A047969).
Original entry on oeis.org
1, 2, 5, 14, 43, 144, 523, 2048, 8597, 38486, 182905, 919146, 4866871, 27068420, 157693007, 959873708, 6091057009, 40213034874, 275699950381, 1959625294310, 14418124498211, 109655727901592, 860946822538675, 6969830450679864, 58114638923638573
Offset: 0
a(3) = 1 + 5 + 7 + 1 = 14.
From _Paul D. Hanna_, Jul 22 2014: (Start)
G.f. A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 43*x^4 + 144*x^5 + 523*x^6 + 2048*x^7 + ...
where we have the series identity:
A(x) = (1-x)*( 1/(1-2*x) + x/(1-3*x) + x^2/(1-4*x) + x^3/(1-5*x) + x^4/(1-6*x) + x^5/(1-7*x) + x^6/(1-8*x) + ...)
is equal to
A(x) = 1/(1-x) + x/((1-x)*(1-2*x)) + x^2/((1-2*x)*(1-3*x)) + x^3/((1-3*x)*(1-4*x)) + x^4/((1-4*x)*(1-5*x)) + x^5/((1-5*x)*(1-6*x)) + x^6/((1-6*x)*(1-7*x)) + ...
and also equals
A(x) = 1/((1-x)*(1+x)) + 2!*x/((1-x)^2*(1+x)*(1+2*x)) + 3!*x^2/((1-x)^3*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
(End)
From _Joerg Arndt_, Mar 08 2015: (Start)
There are a(4-1)=14 length-4 RGS as in the comment (dots denote zeros):
01: [ . . . . ]
02: [ . . . 1 ]
03: [ . . 1 . ]
04: [ . . 1 1 ]
05: [ . 1 . . ]
06: [ . 1 . 1 ]
07: [ . 1 . 2 ]
08: [ . 1 1 . ]
09: [ . 1 1 1 ]
10: [ . 1 1 2 ]
11: [ . 1 2 . ]
12: [ . 1 2 1 ]
13: [ . 1 2 2 ]
14: [ . 1 2 3 ]
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- G. E. Andrews, The Theory of Partitions, 1976, page 242 table of Gaussian polynomials.
- David Callan, The number of bar(31)542-avoiding permutations, arXiv:1111.3088 [math.CO], 2011.
- Rupert Li, Vincular Pattern Avoidance on Cyclic Permutations, arXiv:2107.12353 [math.CO], 2021.
- Zhicong Lin and Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Lara Pudwell, Enumeration Schemes for Pattern-Avoiding Words and Permutations, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2008.
- Lara Pudwell, Enumeration schemes for permutations avoiding barred patterns, El. J. Combinat. 17 (1) (2010) R29.
- Eric Weisstein's World of Mathematics, Nexus Number
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Antidiagonal sums of
A085388 (beginning with the second antidiagonal) and
A047969.
-
T := proc(n, k) option remember; local j;
if k=n then 1
elif k>n then 0
else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)
fi end:
A047970 := n -> T(n,0);
seq(A047970(n), n=0..24); # Peter Luschny, May 14 2014
-
a[ n_] := SeriesCoefficient[ ((1 - x) Sum[ x^k / (1 - (k + 2) x), {k, 0, n}]), {x, 0, n}]; (* Michael Somos, Jul 09 2014 *)
-
/* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
{a(n)=polcoeff( sum(m=0, n, (m+1)!*x^m/(1-x)^(m+1)/prod(k=1, m+1, 1+k*x +x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
-
/* From o.g.f. (Paul D. Hanna, Jul 22 2014) */
{a(n)=polcoeff( sum(m=0, n, x^m/((1-m*x)*(1-(m+1)*x +x*O(x^n)))), n)}
for(n=0, 25, print1(a(n), ", "))
-
def A074664():
T = []; n = 0
while True:
T.append(1)
yield T[0]
for k in (0..n):
T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))
n += 1
a = A074664()
[next(a) for n in range(25)] # Peter Luschny, May 13 2014
A101494
Triangle, read by rows, where T(n,k) = Sum_{j=0..n-k-1} C(j+k,j)*T(n-1,j+k) for n>k>=0 with T(n,n)=1.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 8, 4, 1, 1, 23, 23, 13, 5, 1, 1, 66, 73, 44, 19, 6, 1, 1, 210, 253, 162, 73, 26, 7, 1, 1, 733, 948, 643, 302, 111, 34, 8, 1, 1, 2781, 3817, 2724, 1337, 506, 159, 43, 9, 1, 1, 11378, 16433, 12259, 6266, 2457, 788, 218, 53, 10, 1, 1, 49864, 75295
Offset: 0
4th row sum = 23 = (5-0)^0+(5-1)^1+(5-2)^2+(5-3)^3+(5-4)^4.
5th row sum = 66 = (6-0)^0+(6-1)^1+(6-2)^2+(6-3)^3+(6-4)^4+(6-5)^5.
T(6,0) = 66 = 1*23 + 1*23 + 1*13 + 1*5 + 1*1 + 1*1.
T(6,1) = 73 = 1*23 + 2*13 + 3*5 + 4*1 + 5*1.
T(6,2) = 44 = 1*13 + 3*5 + 6*1 + 10*1.
Rows begin:
1;
1, 1;
2, 1, 1;
4, 3, 1, 1;
9, 8, 4, 1, 1;
23, 23, 13, 5, 1, 1;
66, 73, 44, 19, 6, 1, 1;
210, 253, 162, 73, 26, 7, 1, 1;
733, 948, 643, 302, 111, 34, 8, 1, 1;
2781, 3817, 2724, 1337, 506, 159, 43, 9, 1, 1;
11378, 16433, 12259, 6266, 2457, 788, 218, 53, 10, 1, 1;
49864, 75295, 58423, 30953, 12558, 4147, 1163, 289, 64, 11, 1, 1;
232769, 365600, 293902, 160823, 67259, 22878, 6574, 1647, 373, 76, 12, 1, 1; ...
-
Flat(List([0..10],n->List([0..n],k->Sum([0..n-k],j->Binomial(j+k,j)*(n-k-j)^j)))); # Muniru A Asiru, Mar 07 2019
-
T(n,k)=if(n
-
T(n,k)=polcoeff(sum(m=0,n-k, x^m/(1-m*x +x*O(x^(n-k)))^(k+1)),n-k)
for(n=0,12,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Mar 06 2013
Original entry on oeis.org
1, 1, 3, 9, 29, 101, 379, 1525, 6549, 29889, 144419, 736241, 3947725, 22201549, 130624587, 802180701, 5131183301, 34121977865, 235486915507, 1683925343929, 12458499203901, 95237603403381, 751291094637083, 6108883628141189, 51144808472958709, 440444879385258001
Offset: 0
The 9 sequences for n=4 (sorted by maximum)
1121,1122,2211,2212, 1113,2223,3331,3332, 4444
The 29 sequences for n=5 (sorted by maximum)
11211,11212,11221,11222, 22111,22112,22121,22122, 11123,11131,11132,11133, 22213,22231,22232,22233, 33311,33312,33313,33321,33322,33323, 11114, 22224, 33334, 44441,44442,44443, 55555
First differences of column 0 of triangle
A089246 (beginning at row 1). With offset 1, first differences of column 0 of triangle
A242431. Second differences of column 0 of triangle
A101494.
-
a[n_]:= If[n==0, 1, n + Sum[(i-1)^2*i^(n-i), {i,0,n}]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 12 2022 *)
-
a(n) = n + sum(i = 0, n, (n-i-1)^2 * (n-i)^i); \\ Michel Marcus, Mar 01 2021
-
[n +sum((j-1)^2*j^(n-j) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jan 12 2022
Combinatorial interpretation and examples by
Olivier Gérard, Jan 29 2023
Original entry on oeis.org
1, 1, 3, 8, 23, 73, 253, 948, 3817, 16433, 75295, 365600, 1874083, 10108025, 57194585, 338615084, 2092609701, 13470059649, 90137761867, 625940219896, 4503468629391, 33520255302185, 257764170849941, 2045255722438180
Offset: 0
-
List([0..30],n->Sum([0..n],k->(k+1)*(n-k)^k)); # Muniru A Asiru, Mar 05 2019
-
[(&+[(k+1)*(n-k)^k: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Mar 05 2019
-
Join[{1},Table[Sum[(k+1)(n-k)^k,{k,0,n}],{n,30}]] (* Harvey P. Dale, Mar 04 2013 *)
-
a(n) = sum(k=0, n, (k+1)*(n-k)^k); \\ Michel Marcus, Mar 05 2019
-
[sum((k+1)*(n-k)^k for k in (0..n)) for n in (0..30)] # G. C. Greubel, Mar 05 2019
A112531
Triangle read by rows which lists compositions having at least one part equal to 1.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 3, 1, 2, 3, 6, 4, 3, 6, 4, 1, 2, 3, 6, 4, 6, 12, 12, 5, 3, 6, 12, 10, 4, 10, 5, 1, 2, 3, 6, 4, 6, 12, 12, 5, 6, 12, 24, 20, 12, 30, 20, 6, 3, 6, 12, 10, 12, 30, 30, 15, 4, 10, 20, 20, 5, 15, 6, 1
Offset: 1
The partitions (see A241596) begin 1 2 11 3 22 21 111 4 33 32 222 31 221 211 1111 ...
After omitting partitions with no part equal to 1, we have
1 11 21 111 31 221 211 1111 ...
which give rise to 1 1 2 1 2 3 3 1 ... compositions.
The resulting triangle of compositions begins:
1;
1;
2, 1;
2, 3, 3, 1;
2, 3, 6, 4, 3, 6, 4, 1;
2, 3, 6, 4, 6, 12, 12, 5, 3, 6, 12, 10, 4, 10, 5, 1;
2, 3, 6, 4, 6, 12, 12, 5, 6, 12, 24, 20, 12, 30, 20, 6, 3, 6, 12, 10, 12, 30, 30, 15, 4, 10, 20, 20, 5, 15, 6, 1;
...
A242431
Triangle read by rows: T(n, k) = (k + 1)*T(n-1, k) + Sum_{j=k..n-1} T(n-1, j) for k < n, T(n, n) = 1. T(n, k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 14, 10, 4, 1, 43, 35, 17, 5, 1, 144, 128, 74, 26, 6, 1, 523, 491, 329, 137, 37, 7, 1, 2048, 1984, 1498, 730, 230, 50, 8, 1, 8597, 8469, 7011, 3939, 1439, 359, 65, 9, 1, 38486, 38230, 33856, 21568, 9068, 2588, 530, 82, 10, 1
Offset: 0
0| 1;
1| 2, 1;
2| 5, 3, 1;
3| 14, 10, 4, 1;
4| 43, 35, 17, 5, 1;
5| 144, 128, 74, 26, 6, 1;
6| 523, 491, 329, 137, 37, 7, 1;
7| 2048, 1984, 1498, 730, 230, 50, 8, 1;
-
T := proc(n, k) option remember; local j;
if k=n then 1
elif k>n then 0
else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)
fi end:
seq(print(seq(T(n,k), k=0..n)), n=0..7);
-
def A242431_rows():
T = []; n = 0
while True:
T.append(1)
yield T
for k in (0..n):
T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))
n += 1
a = A242431_rows()
for n in range(8): next(a)
Showing 1-8 of 8 results.
Comments