cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006094 Products of 2 successive primes.

Original entry on oeis.org

6, 15, 35, 77, 143, 221, 323, 437, 667, 899, 1147, 1517, 1763, 2021, 2491, 3127, 3599, 4087, 4757, 5183, 5767, 6557, 7387, 8633, 9797, 10403, 11021, 11663, 12317, 14351, 16637, 17947, 19043, 20711, 22499, 23707, 25591, 27221, 28891, 30967, 32399, 34571, 36863
Offset: 1

Views

Author

Keywords

Comments

The Huntley reference would suggest prefixing the sequence with an initial 4 - Enoch Haga. [But that would conflict with the definition! - N. J. A. Sloane, Oct 13 2009]
Sequence appears to coincide with the sequence of numbers n such that the largest prime < sqrt(n) and the smallest prime > sqrt(n) divide n. - Benoit Cloitre, Apr 04 2002
This is true: p(n) < [ sqrt(a(n)) = sqrt(p(n)*p(n+1)) ] < p(n+1) by definition. - Jon Perry, Oct 02 2013
a(n+1) = smallest number such that gcd(a(n), a(n+1)) = prime(n+1). - Alexandre Wajnberg and Ray Chandler, Oct 14 2005
Also the area of rectangles whose side lengths are consecutive primes. E.g., the consecutive primes 7,11 produce a 7 X 11 unit rectangle which has area 77 square units. - Cino Hilliard, Jul 28 2006
a(n) = A001358(A172348(n)); A046301(n) = lcm(a(n), a(n+1)); A065091(n) = gcd(a(n), a(n+1)); A066116(n+2) = a(n+1)*a(n); A109805(n) = a(n+1) - a(n). - Reinhard Zumkeller, Mar 13 2011
See A209329 for the sum of the reciprocals. - M. F. Hasler, Jan 22 2013
A078898(a(n)) = 3. - Reinhard Zumkeller, Apr 06 2015

References

  • H. E. Huntley, The Divine Proportion, A Study in Mathematical Beauty. New York: Dover, 1970. See Chapter 13, Spira Mirabilis, especially Fig. 13-5, page 173.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subset of the squarefree semiprimes, A006881.
Subsequence of A256617 and A097889.

Programs

  • Haskell
    a006094 n = a006094_list !! (n-1)
    a006094_list = zipWith (*) a000040_list a065091_list
    -- Reinhard Zumkeller, Mar 13 2011
    
  • Haskell
    a006094_list = pr a000040_list
      where pr (n:m:tail) = n*m : pr (m:tail)
            pr _ = []
    -- Jean-François Antoniotti, Jan 08 2020
    
  • Magma
    [NthPrime(n)*NthPrime(n+1): n in [1..41]]; // Bruno Berselli, Feb 24 2011
    
  • Maple
    a:= n-> (p-> p(n)*p(n+1))(ithprime):
    seq(a(n), n=1..43);  # Alois P. Heinz, Jan 02 2021
  • Mathematica
    Table[ Prime[n] Prime[n + 1], {n, 40}] (* Robert G. Wilson v, Jan 22 2004 *)
    Times@@@Partition[Prime[Range[60]], 2, 1] (* Harvey P. Dale, Oct 15 2011 *)
  • MuPAD
    ithprime(i)*ithprime(i+1) $ i = 1..41 // Zerinvary Lajos, Feb 26 2007
    
  • PARI
    g(n) = for(x=1,n,print1(prime(x)*prime(x+1)",")) \\ Cino Hilliard, Jul 28 2006
    
  • PARI
    is(n)=my(p=precprime(sqrtint(n))); p>1 && n%p==0 && isprime(n/p) && nextprime(p+1)==n/p \\ Charles R Greathouse IV, Jun 04 2014
    
  • Python
    from sympy import prime, primerange
    def aupton(nn):
        alst, prevp = [], 2
        for p in primerange(3, prime(nn+1)+1): alst.append(prevp*p); prevp = p
        return alst
    print(aupton(43)) # Michael S. Branicky, Jun 15 2021
    
  • Python
    from sympy import prime, nextprime
    def A006094(n): return (p:=prime(n))*nextprime(p) # Chai Wah Wu, Oct 18 2024

Formula

A209329 = Sum_{n>=2} 1/a(n). - M. F. Hasler, Jan 22 2013
a(n) = A000040(n) * A000040(n+1). - Alois P. Heinz, Jan 02 2021

A246277 Column index of n in A246278: a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 15, 1, 16, 7, 17, 3, 18, 1, 19, 11, 20, 1, 21, 1, 22, 6, 23, 1, 24, 2, 25, 13, 26, 1, 27, 5, 28, 17, 29, 1, 30, 1, 31, 10, 32, 7, 33, 1, 34, 19, 35, 1, 36, 1, 37, 9, 38, 3, 39, 1, 40, 8, 41, 1, 42
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

If n >= 2, n occurs in column a(n) of A246278.
By convention, a(1) = 0 because 1 does not occur in A246278.

Crossrefs

Terms of A348717 halved. A305897 is the restricted growth sequence transform.
Positions of terms 1 .. 8 in this sequence are given by the following sequences: A000040, A001248, A006094, A030078, A090076, A251720, A090090, A030514.
Cf. A078898 (has the same role with array A083221 as this sequence has with A246278).
This sequence is also used in the definition of the following permutations: A246274, A246276, A246675, A246677, A246683, A249815, A249817 (A249818), A249823, A249825, A250244, A250245, A250247, A250249.
Also in the definition of arrays A249821, A251721, A251722.
Sum of prime indices of a(n) is A359358(n) + A001222(n) - 1, cf. A326844.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    a246277[n_Integer] := Module[{f, p, a064989, a},
      f[x_] := Transpose@FactorInteger[x];
      p[x_] := Which[
        x == 1, 1,
        x == 2, 1,
        True, NextPrime[x, -1]];
      a064989[x_] := Times @@ Power[p /@ First[f[x]], Last[f[x]]];
      a[1] = 0;
      a[x_] := If[EvenQ[x], x/2, NestWhile[a064989, x, OddQ]/2];
    a/@Range[n]]; a246277[84] (* Michael De Vlieger, Dec 19 2014 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A246277(n) = { if(1==n, 0, while((n%2), n = A064989(n)); (n/2)); };
    
  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2); \\ Antti Karttunen, Apr 30 2022
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a(n): return 0 if n==1 else n//2 if n%2==0 else a(a064989(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; two different variants, the second one employing memoizing definec-macro)
    (define (A246277 n) (if (= 1 n) 0 (let loop ((n n)) (if (even? n) (/ n 2) (loop (A064989 n))))))
    (definec (A246277 n) (cond ((= 1 n) 0) ((even? n) (/ n 2)) (else (A246277 (A064989 n)))))
    

Formula

a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)) = a(A064216(n+1)). [Cf. the formula for A252463.]
Instead of the equation for a(2n+1) above, we may write a(A003961(n)) = a(n). - Peter Munn, May 21 2022
Other identities. For all n >= 1, the following holds:
For all w >= 0, a(p_{i} * p_{j} * ... * p_{k}) = a(p_{i+w} * p_{j+w} * ... * p_{k+w}).
For all n >= 2, A001222(a(n)) = A001222(n)-1. [a(n) has one less prime factor than n. Thus each semiprime (A001358) is mapped to some prime (A000040), etc.]
For all n >= 2, a(n) = A078898(A249817(n)).
For semiprimes n = p_i * p_j, j >= i, a(n) = A000040(1+A243055(n)) = p_{1+j-i}.
a(n) = floor(A348717(n)/2). - Antti Karttunen, Apr 30 2022
If n has prime factorization Product_{i=1..k} prime(x_i), then a(n) = Product_{i=2..k} prime(x_i-x_1+1). The opposite version is A358195, prime indices A358172, even bisection A241916. - Gus Wiseman, Dec 29 2022

A348717 a(n) is the least k such that A003961^i(k) = n for some i >= 0 (where A003961^i denotes the i-th iterate of A003961).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 10, 2, 12, 2, 14, 6, 16, 2, 18, 2, 20, 10, 22, 2, 24, 4, 26, 8, 28, 2, 30, 2, 32, 14, 34, 6, 36, 2, 38, 22, 40, 2, 42, 2, 44, 12, 46, 2, 48, 4, 50, 26, 52, 2, 54, 10, 56, 34, 58, 2, 60, 2, 62, 20, 64, 14, 66, 2, 68, 38, 70, 2, 72, 2
Offset: 1

Views

Author

Rémy Sigrist, Oct 31 2021

Keywords

Comments

All terms except a(1) = 1 are even.
To compute a(n) for n > 1:
- if n = Product_{j = 1..o} prime(p_j)^e_j (where prime(i) denotes the i-th prime number, p_1 < ... < p_o and e_1 > 0)
- then a(n) = Product_{j = 1..o} prime(p_j + 1 - p_1)^e_j.
This sequence has similarities with A304776: here we shift down prime indexes, there prime exponents.
Smallest number generated by uniformly decrementing the indices of the prime factors of n. Thus, for n > 1, the smallest m > 1 such that the first differences of the indices of the ordered prime factors (including repetitions) are the same for m and n. As a function, a(.) preserves properties such as prime signature. - Peter Munn, May 12 2022

Crossrefs

Positions of particular values (see formula section): A000040, A001248, A006094, A030078, A030514, A046301, A050997, A090076, A090090, A166329, A251720.
Also see formula section for the relationship to: A000265, A003961, A004277, A005940, A020639, A046523, A055396, A071364, A122111, A156552, A243055, A243074, A297845, A322993.
Sequences with comparable definitions: A304776, A316437.
Cf. A246277 (terms halved), A305897 (restricted growth sequence transform), A354185 (Möbius transform), A354186 (Dirichlet inverse), A354187 (sum with it).

Programs

  • Mathematica
    a[1] = 1; a[n_] := Module[{f = FactorInteger[n], d}, d = PrimePi[f[[1, 1]]] - 1; Times @@ ((Prime[PrimePi[#[[1]]] - d]^#[[2]]) & /@ f)]; Array[a, 100] (* Amiram Eldar, Oct 31 2021 *)
  • PARI
    a(n) = { my (f=factor(n)); if (#f~>0, my (pi1=primepi(f[1,1])); for (k=1, #f~, f[k,1] = prime(primepi(f[k,1])-pi1+1))); factorback(f) }

Formula

a(n) = n iff n belongs to A004277.
A003961^(A055396(n)-1)(a(n)) = n for any n > 1.
a(n) = 2 iff n belongs to A000040 (prime numbers).
a(n) = 4 iff n belongs to A001248 (squares of prime numbers).
a(n) = 6 iff n belongs to A006094 (products of two successive prime numbers).
a(n) = 8 iff n belongs to A030078 (cubes of prime numbers).
a(n) = 10 iff n belongs to A090076.
a(n) = 12 iff n belongs to A251720.
a(n) = 14 iff n belongs to A090090.
a(n) = 16 iff n belongs to A030514.
a(n) = 30 iff n belongs to A046301.
a(n) = 32 iff n belongs to A050997.
a(n) = 36 iff n belongs to A166329.
a(1) = 1, for n > 1, a(n) = 2*A246277(n). - Antti Karttunen, Feb 23 2022
a(n) = A122111(A243074(A122111(n))). - Peter Munn, Feb 23 2022
From Peter Munn and Antti Karttunen, May 12 2022: (Start)
a(1) = 1; a(2n) = 2n; a(A003961(n)) = a(n). [complete definition]
a(n) = A005940(1+A322993(n)) = A005940(1+A000265(A156552(n))).
Equivalently, A156552(a(n)) = A000265(A156552(n)).
A297845(a(n), A020639(n)) = n.
A046523(a(n)) = A046523(n).
A071364(a(n)) = A071364(n).
a(n) >= A071364(n).
A243055(a(n)) = A243055(n).
(End)

A332820 Integers in the multiplicative subgroup of positive rationals generated by the products of two consecutive primes and the cubes of primes. Numbers k for which A048675(k) is a multiple of three.

Original entry on oeis.org

1, 6, 8, 14, 15, 20, 26, 27, 33, 35, 36, 38, 44, 48, 50, 51, 58, 63, 64, 65, 68, 69, 74, 77, 84, 86, 90, 92, 93, 95, 106, 110, 112, 117, 119, 120, 122, 123, 124, 125, 141, 142, 143, 145, 147, 156, 158, 160, 161, 162, 164, 170, 171, 177, 178, 185, 188, 196, 198, 201, 202, 208, 209, 210, 214, 215, 216, 217, 219, 221, 225
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between this sequence, A332821 and A332822, which list the integers in respective cosets of the subgroup.
As the sequence lists the integers in a multiplicative subgroup of the positive rationals, the sequence is closed under multiplication and, provided the result is an integer, under division.
It follows that for any n in this sequence, all powers n^k are present (k >= 0), as are all cubes.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting numbers are a permutation of the full sequence; and if we take the square root of each square term we get the full sequence.
There are no primes in the sequence, therefore if k is present and p is a prime, k*p and k/p are absent (noting that k/p might not be an integer). This property extends from primes to all terms of A050376 (often called Fermi-Dirac primes), therefore to squares of primes, 4th powers of primes etc.
The terms are the even numbers in A332821 halved. The terms are also the numbers m such that 5m is in A332821, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332822, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332822, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332821, which consists exactly of those numbers. These properties extend in a pattern of alternating primes as described in the previous paragraph.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.
If m and n are in this sequence then so is m*n (the definition of "multiplicative semigroup"), while if n is in this sequence, and x is in the complement A359830, then n*x is in A359830. This essentially follows from the fact that A048675 is totally additive sequence. Compare to A329609. - Antti Karttunen, Jan 17 2023

Crossrefs

Positions of zeros in A332823; equivalently, numbers in row 3k of A277905 for some k >= 0.
Cf. A048675, A195017, A332821, A332822, A353350 (characteristic function), A353348 (its Dirichlet inverse), A359830 (complement).
Subsequences: A000578\{0}, A006094, A090090, A099788, A245630 (A191002 in ascending order), A244726\{0}, A325698, A338471, A338556, A338907.
Subsequence of {1} U A268388.

Programs

  • Mathematica
    Select[Range@ 225, Or[Mod[Total@ #, 3] == 0 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]], # == 1] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332820(n) =  { my(f = factor(n)); !((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); };

Formula

{a(n) : n >= 1} = {1} U {2 * A332822(k) : k >= 1} U {A003961(a(k)) : k >= 1}.
{a(n) : n >= 1} = {1} U {a(k)^2 : k >= 1} U {A331590(2, A332822(k)) : k >= 1}.
From Peter Munn, Mar 17 2021: (Start)
{a(n) : n >= 1} = {k : k >= 1, 3|A048675(k)}.
{a(n) : n >= 1} = {k : k >= 1, 3|A195017(k)}.
{a(n) : n >= 1} = {A332821(k)/2 : k >= 1, 2|A332821(k)}.
{a(n) : n >= 1} = {A332822(k)/3 : k >= 1, 3|A332822(k)}.
(End)

Extensions

New name from Peter Munn, Mar 08 2021

A090076 a(n) = prime(n)*prime(n+2).

Original entry on oeis.org

10, 21, 55, 91, 187, 247, 391, 551, 713, 1073, 1271, 1591, 1927, 2279, 2773, 3233, 3953, 4331, 4891, 5609, 6059, 7031, 8051, 8989, 9991, 10807, 11227, 12091, 13843, 14803, 17399, 18209, 20413, 20989, 23393, 24613, 26219, 28199, 29893, 31313
Offset: 1

Views

Author

Felix Tubiana, Jan 21 2004

Keywords

Comments

Subsequence of A192133. - Reinhard Zumkeller, Jun 26 2011
For n > 1: A078898(a(n)) = 4. - Reinhard Zumkeller, Apr 06 2015

Examples

			a(5) = prime(5)*prime(7) = 11*17 = 187.
		

Crossrefs

Subset of the squarefree semiprimes, A006881. Cf. A006094, A090090.
Cf. A078898.

Programs

  • Haskell
    a090076 n = a090076_list !! (n-1)
    a090076_list = zipWith (*) a000040_list $ drop 2 a000040_list
    -- Reinhard Zumkeller, Dec 17 2014
  • Mathematica
    Table[Prime[n] Prime[n + 2], {n, 1, 40}] (* Robert G. Wilson v, Jan 22 2004 *)
    Last[#]First[#]&/@Partition[Prime[Range[50]],3,1] (* Harvey P. Dale, May 08 2013 *)
  • MuPAD
    ithprime(i)*ithprime(i+2) $ i = 1..40 // Zerinvary Lajos, Feb 26 2007
    
  • Sage
    def prime_gaps(n):
        primegaps = []
        nprimes = primes_first_n(n+1)
        for i in range(2, n+1):
            primegaps.append(nprimes[i]*nprimes[i-2])
        return primegaps
    print(prime_gaps(60)) # Zerinvary Lajos, Jul 08 2008
    

Extensions

Extended by Robert G. Wilson v, Jan 22 2004

A117301 a(n) = prime(n+3)*prime(n) - prime(n+1)*prime(n+2).

Original entry on oeis.org

-1, -2, -12, -24, -12, -24, 56, -78, -48, 42, -184, -24, 152, 46, -260, -48, 102, -304, 110, 126, -60, 276, -250, -630, -24, -12, -24, 1272, -72, -1156, -294, 476, -24, -676, 580, -374, -60, 286, -740, 644, -24, -1206, -12, 1520, 1942, -1880
Offset: 1

Views

Author

Cino Hilliard, Apr 24 2006

Keywords

Comments

The number of negative values in this sequence appears to be consistently larger than the number of positive values. The following list gives the number of positive terms among the first n terms divided by the number of negative terms among the first n terms for various n.
n ratio
10^2 0.51515151515...
10^3 0.70940170940...
10^4 0.80212650928...
10^5 0.83826908582...
10^6 0.86339454584...
Cino Hilliard conjectures that this ratio converges and that there are infinitely many elements in the sequence whose absolute value is 12.
It appears that the positions of negative multiples of 12 are given by A064026(n+1) for n >= 1. If so, then Hilliard's conjecture is true, and a further conjecture is that if k >= 2 then there are infinitely many multiples of -12*k in this sequence. - Clark Kimberling, Jan 01 2014

Examples

			a(4) = prime(4)*prime(7) - prime(5)*prime(6) = 7*17 - 11*13 = -24.
		

Programs

  • Mathematica
    Table[Prime[n]*Prime[n + 3] - Prime[n + 1]Prime[n + 2], {n, 1, 100}] (* Stefan Steinerberger, Jun 27 2007 *)
    (* The following program is significantly faster: *)
    (First[#]Last[#]-#[[2]]#[[3]])&/@Partition[Prime[Range[50]],4,1] (* Harvey P. Dale, May 08 2011 *)
  • PARI
    det2cont(n) = {local(m,p,x, D); m=0; p=0; for(x=1,n, D=prime(x)*prime(x+3)-prime(x+1)*prime(x+2); if(D<0,m++,p++); print1(D",") ); print(); print("neg= "m); print("pos= "p); print("pos/neg = "p/m+.) }

Formula

a(n) = A090090(n) - A006094(n+1). - Michel Marcus, Oct 07 2013

Extensions

Edited by Stefan Steinerberger, Jun 27 2007

A276942 Square array A(row,col): A(row,1) = A276937(row), and for col > 1, A(row,col) = A003961(A(row,col-1)), read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

2, 3, 6, 5, 15, 9, 7, 35, 25, 10, 11, 77, 49, 21, 14, 13, 143, 121, 55, 33, 18, 17, 221, 169, 91, 65, 75, 22, 19, 323, 289, 187, 119, 245, 39, 26, 23, 437, 361, 247, 209, 847, 85, 51, 30, 29, 667, 529, 391, 299, 1859, 133, 95, 105, 34, 31, 899, 841, 551, 493, 3757, 253, 161, 385, 57, 38, 37, 1147, 961, 713, 589, 6137, 377, 319, 1001, 115, 69, 42
Offset: 2

Views

Author

Antti Karttunen, Sep 25 2016

Keywords

Comments

The starting offset is 2 because 1 is not included in the array proper. With it the terms are a permutation of A276078.
All terms on each row have the same prime signature.

Examples

			The top left corner of the array:
   2,  3,  5,   7,  11,  13,  17,  19,  23,   29,   31,   37,   41,   43
   6, 15, 35,  77, 143, 221, 323, 437, 667,  899, 1147, 1517, 1763, 2021
   9, 25, 49, 121, 169, 289, 361, 529, 841,  961, 1369, 1681, 1849, 2209
  10, 21, 55,  91, 187, 247, 391, 551, 713, 1073, 1271, 1591, 1927, 2279
  14, 33, 65, 119, 209, 299, 493, 589, 851, 1189, 1333, 1739, 2173, 2537
		

Crossrefs

Transpose: A276941.
Leftmost column: A276937, second column: A276938.
Rows from the top: A000040, A006094, A001248 (from 9 onward), A090076, A090090.
Cf. A003961.
Cf. A276078 (sorted into ascending order).
Cf. also A276075, A276955.

Programs

Formula

A(row,1) = A276937(row); for col > 1, A(row,col) = A003961(A(row,col-1)).
Showing 1-7 of 7 results.