cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A020876 a(n) = ((5+sqrt(5))/2)^n + ((5-sqrt(5))/2)^n.

Original entry on oeis.org

2, 5, 15, 50, 175, 625, 2250, 8125, 29375, 106250, 384375, 1390625, 5031250, 18203125, 65859375, 238281250, 862109375, 3119140625, 11285156250, 40830078125, 147724609375, 534472656250, 1933740234375, 6996337890625, 25312988281250, 91583251953125
Offset: 0

Views

Author

Keywords

Comments

Number of no-leaf edge-subgraphs in Moebius ladder M_n.

Examples

			G.f. = 2 + 5*x + 15*x^2 + 50*x^3 + 175*x^4 + 625*x^5 + 2250*x^6 + ...
		

Crossrefs

Appears in A109106. - Johannes W. Meijer, Jul 01 2010

Programs

  • Magma
    [Floor(((5+Sqrt(5))/2)^n+((5-Sqrt(5))/2)^n): n in [0..30]]; // Vincenzo Librandi, Aug 08 2014
  • Maple
    G:=(x,n)-> cos(x)^n+cos(3*x)^n:
    seq(simplify(4^n*G(Pi/10,2*n)), n=0..22); # Gary Detlefs, Dec 05 2010
  • Mathematica
    Table[Sum[LucasL[2*i] Binomial[n, i], {i, 0, n}], {n, 0, 50}] (* T. D. Noe, Sep 10 2011 *)
    CoefficientList[Series[(2 - 5 x)/(1 - 5 x + 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 08 2014 *)
    LinearRecurrence[{5,-5},{2,5},30] (* Harvey P. Dale, Mar 13 2016 *)
  • Sage
    [lucas_number2(n,5,5) for n in range(0,24)] # Zerinvary Lajos, Jul 08 2008
    

Formula

Also, a(n) = (sqrt(5)*phi)^n + (sqrt(5)/phi)^n, where phi = golden ratio. - N. J. A. Sloane, Aug 08 2014
Let S(n, m)=sum(k=0, n, binomial(n, k)*fibonacci(m*k)), then for n>0 a(n)= S(2*n, 2)/S(n, 2). - Benoit Cloitre, Oct 22 2003
From R. J. Mathar, Feb 06 2010: (Start)
a(n)= 5*a(n-1) - 5*a(n-2).
G.f.: (2-5*x)/(1-5*x+5*x^2). (End)
From Johannes W. Meijer, Jul 01 2010: (Start)
Lim_{k->infinity} a(n+k)/a(k) = (A020876(n) + A093131(n)*sqrt(5))/2.
Lim_{k->infinity} A020876(n)/A093131(n) = sqrt(5). (End)
Binomial transform of A005248. - Carl Najafi, Sep 10 2011
a(n) = 2*A030191(n) - 5*A030191(n-1). - R. J. Mathar, Mar 02 2012
From Kai Wang, Dec 22 2019: (Start)
a((2*m+1)*k)/a(k) = Sum_{i=0..m-1} (-1)^(i*(k+1))*a(2*(m-i)*k) + 5^(m*k).
A093131(m+r)*A093131(n+s) + A093131(m+s)*A093131(n+r) = (2*a(m+n+r+s) - 5^(n+s)*a(m-n)*a(r-s))/5.
a(m+r)*a(n+s) - a(m+s)*a(n+r) = 5^(n+s+1)*A093131(m-n)*A093131(r-s).
a(m+r)*a(n+s) + a(m+s)*a(n+r) = 2*a(m+n+r+s) + 5^(n+s)*a(m-n)*a(r-s).
a(m+r)*a(n+s) - 5*A093131(m+s)*A093131(n+r) = 5^(n+s)*a(m-n)*a(r-s).
a(m+r)*a(n+s) + 5*A093131(m+s)*A093131(n+r) = 2*a(m+n+r+s)+ 5^(n+s+1)*A093131(m-n)*A093131(r-s).
A093131(m-n) = (A093131(m)*a(n) - a(m)*A093131(n))/(2*5^n).
A093131(m+n) = (A093131(m)*a(n) + a(m)*A093131(n))/2.
a(n)^2 - a(n+1)*a(n-1) = -5^n.
a(n)^2 - a(n+r)*a(n-r) = -5^(n-r+1)*A093131(r)^2.
a(m)*a(n+1) - a(m+1)*a(n) = -5^(n+1)*A093131(m-n).
a(m+n) - 5^(n)*a(m-n) = 5*A093131(m)*A093131(n).
a(m+n) + 5^(n)*a(m-n) = a(m)*a(n).
a(m-n) = (a(m)*a(n) - 5*A093131(m)*A093131(n))/(2*5^n).
a(m+n) = (a(m)*a(n) + 5*A093131(m)*A093131(n))/2. (End)
E.g.f.: 2*exp(5*x/2)*cosh(sqrt(5)*x/2). - Stefano Spezia, Dec 27 2019

Extensions

Definition simplified by N. J. A. Sloane, Aug 08 2014

A039717 Row sums of convolution triangle A030523.

Original entry on oeis.org

1, 4, 15, 55, 200, 725, 2625, 9500, 34375, 124375, 450000, 1628125, 5890625, 21312500, 77109375, 278984375, 1009375000, 3651953125, 13212890625, 47804687500, 172958984375, 625771484375, 2264062500000, 8191455078125
Offset: 1

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 5.
With offset 0 = INVERT transform of A001792: (1, 3, 8, 20, 48, 112, ...). - Gary W. Adamson, Oct 26 2010
From Tom Copeland, Nov 09 2014: (Start)
The array belongs to a family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the o.g.f. (1-sqrt(1-4x/(1+(1-t)x)))/2 and inverse x*(1-x)/(1 + (t-1)*x*(1-x)). See A091867 for more info on this family. Here t = -4 (mod signs in the results).
Let C(x) = (1 - sqrt(1-4x))/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1+t*x) with inverse P(x,-t).
O.g.f.: G(x) = x*(1-x)/(1 - 5x*(1-x)) = P(Cinv(x),-5).
Inverse O.g.f.: Ginv(x) = (1 - sqrt(1 - 4*x/(1+5x)))/2 = C(P(x,5)) (signed A026378). Cf. A030528. (End)
p-INVERT of (2^n), where p(s) = 1 - s - s^2; see A289780. - Clark Kimberling, Aug 10 2017

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x) / (1 - 5 x + 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
  • PARI
    Vec(x*(1-x)/(1-5*x+5*x^2) + O(x^40)) \\ Altug Alkan, Nov 20 2015

Formula

G.f.: x*(1-x)/(1-5*x+5*x^2) = g1(3, x)/(1-g1(3, x)), g1(3, x) := x*(1-x)/(1-2*x)^2 (g.f. first column of A030523).
From Paul Barry, Apr 16 2004: (Start)
Binomial transform of Fibonacci(2n+2).
a(n) = (sqrt(5)/2 + 5/2)^n*(3*sqrt(5)/10 + 1/2) - (5/2 - sqrt(5)/2)^n*(3*sqrt(5)/10 - 1/2). (End)
a(n) = (1/5)*Sum_{r=1..9} sin(3*r*Pi/10)*sin(r*Pi/2)*(2*cos(r*Pi/10))^(2*n).
a(n) = 5*a(n-1) - 5*a(n-2).
a(n) = Sum_{k=0..n} Sum_{i=0..n} binomial(n, i)*binomial(k+i+1, 2k+1). - Paul Barry, Jun 22 2004
From Johannes W. Meijer, Jul 01 2010: (Start)
Limit_{k->oo} a(n+k)/a(k) = (A020876(n) + A093131(n)*sqrt(5))/2.
Limit_{n->oo} A020876(n)/A093131(n) = sqrt(5).
(End)
From Benito van der Zander, Nov 19 2015: (Start)
Limit_{k->oo} a(k+1)/a(k) = 1 + phi^2 = (5 + sqrt(5)) / 2.
a(n) = a(n-1) * 3 + A081567(n-2) (not proved).
(End)
E.g.f.: exp(x*5/2) * (cosh(x*sqrt(5)/2) + (3/sqrt(5))*sinh(x*sqrt(5)/2)). - Fabian Pereyra, Oct 29 2024

A316269 Array T(n,k) = n*T(n,k-1) - T(n,k-2) read by upward antidiagonals, with T(n,0) = 0, T(n,1) = 1, n >= 2.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 8, 4, 0, 1, 5, 15, 21, 5, 0, 1, 6, 24, 56, 55, 6, 0, 1, 7, 35, 115, 209, 144, 7, 0, 1, 8, 48, 204, 551, 780, 377, 8, 0, 1, 9, 63, 329, 1189, 2640, 2911, 987, 9, 0, 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10
Offset: 2

Views

Author

Jianing Song, Jun 28 2018

Keywords

Comments

Define {x(k)} to be an integer sequence satisfying all the following conditions:
(i) {x(k)} satisfies second-order linear recursion, that is, there exists two integers P, Q such that x(k+2) = P*x(k+1) + Q*x(k) holds for all k >= 0.
(ii) {x(k)} is (not necessarily strictly) increasing. ({A000035(k)} satisfies condition (i), but it doesn't satisfy this.)
(iii) All terms in {x(k)} do not share a common factor. ({A024023(k)} satisfies both conditions (i) and (ii), but all terms share a common factor 2.)
(iv) {x(k)} satisfies strong divisibility, that is, gcd(x(m),x(n)) = x(gcd(m,n)) holds for all m, n >= 0. ({A093131(k)} satisfies all conditions (i) to (iii), but 5 = gcd(A093131(2),A093131(3)) != A093131(gcd(2,3)) = 1.)
(v) For all positive integers n, there eventually exists some m > 0 such that n divides x(m). ({A002275(k)} satisfies all conditions (i) to (iv), but 2, 5 and 10 never divide any term.)
Then it's easy to show that the only solutions to {x(k)} are x(k) = A172236(n,k) or x(k) = T(n,k), i.e., x(0) = 0, x(1) = 1, P >= 1, Q = 1 or P >= 2, Q = -1.
The case n = 0 is not included since it gives the period-4 signed sequence 0, 1, 0, -1, 0, 1, 0, -1, ..., the g.f. of which is the inverse of the 4th cyclotomic polynomial.
The case n = 1 is not included since it gives the period-6 signed sequence 0, 1, 1, 0, -1, -1, ..., the g.f. of which is the inverse of the 6th cyclotomic polynomial.
The congruence property: let p be an odd prime which is not divisible by n^2 - 4, then T(n,(p-1)/2) == 1/2(((n-2)/p) - ((n+2)/p)) (mod p), T(n,(p+1)/2) == 1/2(((n-2)/p) + ((n+2)/p)) (mod p). Here ((n-2)/p) is the Legendre symbol. Or equivalently:
((n-2)/p)...((n+2)/p)...T(n,(p-1)/2) mod p...T(n,(p+1)/2) mod p
.....1...........1...............0....................1
....-1..........-1...............0...................-1
.....1..........-1...............1....................0
....-1...........1..............-1....................0
To prove this, rewrite (n +- sqrt(n^2-4))/2 as ((sqrt(n+2) +- sqrt(n-2))/2)^2.
Let E(n,m) be the smallest number l such that m divides T(n,l), we have: E(n,p) divides (p - ((n^2-4)/p))/2 for odd primes p that are not divisible by n^2 - 4. E(n,p) = p for odd primes p that are divisible by n^2 - 4. E(n,2) = 2 for even n and 3 for odd n.
E(n,p^e) <= p^(e-1)*E(n,p) for all primes p. If p^2 does not divide T(n,E(n,p)), then E(n,p^e) = p^(e-1)*E(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 - 4, p^2 is never divisible by T(n,p), so E(n,p^e) = p^e as described above. E(n,m_1*m_2) = lcm(E(n,m_1),E(n,m_2)) if gcd(m_1,m_2) = 1.
Given n, the largest possible value of E(n,m)/m is 1 for even n and 3/2 for odd n. It can be obtained by the value of E(n,2) described above.
Let pi(n,m) be the Pisano period of T(n,k) modulo m, i.e, the smallest number l such that T(n,k+1) == T(n,k) (mod m) holds for all k >= 0, we have: for odd primes p that are not divisible by n^2 - 4, pi(n,p) divides p + ((n-2)/p) if ((n+2)/p) = -1 and (p - ((n-2)/p))/2 if ((n+2)/p) = 1. pi(n,p) = p for odd primes p that are divisible by n - 2 and 2p for odd primes p that are divisible by n + 2. pi(n,2) = 2 even n and 3 for odd n.
pi(n,p^e) <= p^(e-1)*pi(n,p) for all primes p. If p^2 does not divide T(n,E(n,p)), then pi(n,p^e) = p^(e-1)*pi(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 - 4, p^2 is never divisible by T(n,p), so pi(n,p^e) = p^e or 2p^e as described above. pi(n,m_1*m_2) = lcm(pi(n,m_1),pi(n,m_2)) if gcd(m_1,m_2) = 1.
Given n, the largest possible value of pi(n,m)/m is:
Parity of n...n + 2 is a power of 2 or 3...max{pi(n,m)/m}.....obtained by
....even..........yes (even exponent)............1...........pi(n,2^e) = 2^e
....even...........yes (odd exponent)...........4/3............pi(n,3) = 4
....even...................no....................2.............pi(n,p) = 2p (p >= 3 is any prime factor of n + 2)
.....odd..................yes....................2..........pi(n,3^e) = 2*3^e
.....odd...................no....................3..........pi(n,2p^e) = 6p^e (p >= 5 is any prime factor of n + 2)
The largest possible value of pi(n,m)/m is obtained by infinitely many m except for the case n = 10, in which we have pi(10,3) = 6, pi(10,7) = 8, pi(10,21) = 24 and pi(10,m)/m <= 14/13 for all other m. [Corrected by Jianing Song, Nov 04 2018]
Let z(n,m) be the number of zeros in a period of T(n,k) modulo m, i.e., z(n,m) = pi(n,m)/E(n,m), then we have: for odd primes p that are not divisible by n^2 - 4, z(n,p) = 2 if ((n+2)/p) = -1; 1 or 2 if ((n+2)/p) = 1. z(n,p) = 1 for odd primes p that are divisible by n - 2 and 2 for odd primes p that are divisible by n + 2. z(n,2) = 1.
For all odd primes p, z(n,p) = 2 if and only if pi(n,p) is even, z(n,p) = 1 if and only if pi(n,p) is odd. For all odd primes p, if E(n,p) is even then z(n,p) = 2 (the converse is not necessarily true). [Comment revised by Jianing Song, Jul 06 2019]
z(n,p^e) = z(n,p) for all odd primes p. z(n,4) = 1 if n == 2, 3 (mod 4) and 2 if n == 0, 1 (mod 4). z(n,2^e) = 1 for even n and 2 for odd n, e >= 3.
By induction it is easy to show that T(n,k) = T(n,m+1)*T(n,k-m) - T(n,m)*T(k-m-1). Let k = 2m we have T(n,2m) = T(n,m)*(T(n,m+1)-T(m-1)); let k = 2m+1 we have T(n,2m+1) = T(n,m+1)^2 - T(n,m)^2 = (T(n,m+1)+T(n,m))*(T(n,m+1)-T(n,m)). So T(n,k) is composite if n >= 3, k >= 3. - Jianing Song, Jul 06 2019

Examples

			The array starts in row n = 2 with columns k >= 0 as follows:
  0      1      2      3      4      5      6
  0      1      3      8     21     55    144
  0      1      4     15     56    209    780
  0      1      5     24    115    551   2640
  0      1      6     35    204   1189   6930
  0      1      7     48    329   2255  15456
  0      1      8     63    496   3905  30744
  0      1      9     80    711   6319  56160
  0      1     10     99    980   9701  96030
  0      1     11    120   1309  14279 155760
		

Crossrefs

Cf. A172236.
Sequences with g.f. 1/(1-k*x+x^2): A001477 (k=2), A001906 (k=3), A001353 (k=4), A004254 (k=5), A001109 (k=6), A004187 (k=7), A001090 (k=8), A018913 (k=9), A004189 (k=10).
Cf. A005563 (4th column), A242135 (5th column), A057722 (6th column).

Programs

  • Mathematica
    Table[If[# == 2, k, Simplify[(((# + Sqrt[#^2 - 4])/2)^k - ((# - Sqrt[#^2 - 4])/2)^k)/Sqrt[#^2 - 4]]] &[n - k + 2], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jul 19 2018 *)
  • PARI
    T(n, k) = if (k==0, 0, if (k==1, 1, n*T(n,k-1) - T(n,k-2)));
    tabl(nn) = for(n=2, nn, for (k=0, nn, print1(T(n,k), ", ")); print); \\ Michel Marcus, Jul 03 2018
    
  • PARI
    T(n, k) = ([n, -1; 1, 0]^k)[2, 1] \\ Jianing Song, Nov 10 2018

Formula

T(2,k) = k; T(n,k) = (((n+sqrt(n^2 - 4))/2)^k - ((n - sqrt(n^2 - 4))/2)^k)/sqrt(n^2 - 4), n >= 3, k >= 0.
T(n^2+2,k) = A172236(n,2k); T(n^4+4n^2+2,k) = A172236(n,4k)/A172236(n,4).
For n >= 2, Sum_{i=1..k} 1/T(n,2^i) = 2/n - ((u^(2^k-1) + v^(2^k-1))/(u + v)) * (1/T(n,2^k)), where u = (n + sqrt(n^2 - 4))/2, v = (n - sqrt(n^2 - 4))/2 are the two roots of the polynomial x^2 - n*x + 1. As a result, Sum_{i=>1} 1/T(n,2^i) = (n - sqrt(n^2 - 4))/2. - Jianing Song, Apr 21 2019

A083861 Square array T(n,k) of second binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 5, 0, 1, 5, 19, 0, 1, 5, 20, 65, 0, 1, 5, 21, 75, 211, 0, 1, 5, 22, 85, 275, 665, 0, 1, 5, 23, 95, 341, 1000, 2059, 0, 1, 5, 24, 105, 409, 1365, 3625, 6305, 0, 1, 5, 25, 115, 479, 1760, 5461, 13125, 19171, 0, 1, 5, 26, 125, 551, 2185, 7573, 21845, 47500, 58025
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Comments

Row n >= 0 of the array gives the solution to the recurrence b(k) = 5*b(k-1) + (n - 6)*b(k-2) for k >= 2 with b(0) = 0 and b(1) = 1. The rows are the binomial transforms of the rows of array A083857. The rows are the second binomial transforms of the generalized Fibonacci numbers in array A083856.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  0, 1, 5, 19,  65, 211,  665,  2059,  6305,  19171, ...
  0, 1, 5, 20,  75, 275, 1000,  3625, 13125,  47500, ...
  0, 1, 5, 21,  85, 341, 1365,  5461, 21845,  87381, ...
  0, 1, 5, 22,  95, 409, 1760,  7573, 32585, 140206, ...
  0, 1, 5, 23, 105, 479, 2185,  9967, 45465, 207391, ...
  0, 1, 5, 24, 115, 551, 2640, 12649, 60605, 290376, ...
  0, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, ...
  ...
		

Crossrefs

Rows include A001047 (n=0), A093131 (n=1), A002450 (n=2), A004254 (n=5), A000351 (n=6), A052918 (n=7), A015535 (n=8), A015536 (n=9), A015537 (n=10).
Cf. A083856 (second inverse binomial transform), A083856 (first inverse binomial transform), A082297 (main diagonal).

Programs

  • Magma
    T:= func< n,k | Round( (((5+Sqrt(4*n+1))/2)^k - ((5-Sqrt(4*n+1))/2)^k)/Sqrt(4*n + 1) ) >;
    [T(n-k,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 27 2019
    
  • Maple
    seq(seq(round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ), k=0..n), n=0..10); # G. C. Greubel, Dec 27 2019
  • Mathematica
    T[n_, k_]:= Round[(((5 +Sqrt[4*n+1])/2)^k - ((5 -Sqrt[4*n+1])/2)^k)/Sqrt[4*n+1]]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 27 2019 *)
  • PARI
    T(n, k) = round( (((5+sqrt(4*n+1))/2)^k - ((5-sqrt(4*n+1))/2)^k)/sqrt(4*n + 1) );
    for(n=0,10, for(k=0,n, print1(T(n-k,k), ", "))) \\ G. C. Greubel, Dec 27 2019
    
  • Sage
    [[round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 27 2019

Formula

T(n, k) = (((5 + sqrt(4*n + 1))/2)^k - ((5 - sqrt(4*n + 1))/2)^k)/sqrt(4*n + 1).
O.g.f. for row n >= 0: -x/(-1 + 5*x + (n-6)*x^2) . - R. J. Mathar, Dec 02 2007
From Petros Hadjicostas, Dec 25 2019: (Start)
T(n,k) = 5*T(n,k-1) + (n - 6)*T(n,k-2) for k >= 2 with T(n,0) = 0 and T(n,1) = 1 for all n >= 0.
T(n,k) = Sum_{i = 0..k} binomial(k,i) * A083857(n,i).
T(n,k) = Sum_{i = 0..k} Sum_{j = 0..i} binomial(k,i) * binomial(i,j) * A083856(n,j). (End)

Extensions

Name and various sections edited by Petros Hadjicostas, Dec 25 2019

A217593 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=1 or if k-n >= 9, T(0,k) = 1 for k = 0..8, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 1, 6, 14, 14, 0, 0, 0, 0, 1, 7, 20, 28, 14, 0, 0, 0, 0, 0, 8, 27, 48, 42, 0, 0, 0, 0, 0, 0, 8, 35, 75, 90, 42, 0, 0, 0, 0, 0, 0, 0, 43, 110, 165, 132, 0, 0, 0, 0, 0, 0, 0, 0, 43, 153, 275, 297, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 196, 428, 572, 429, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 18 2013

Keywords

Examples

			Square array begins :
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 0, 0, ...
0, 0, 2, 5, 9, 14, 20, 27, 35, 43, 43, 0, 0, ...
0, 0, 0, 5, 14, 28, 75, 110, 153, 196, 196, 0, 0, ....
0, 0, 0, 0, 14, 42, 90, 165, 275, 428, 624, 820, 820, 0, 0, ...
...
Square array, read by rows, with 0 omitted:
1, 1, 1, 1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6, 7, 8, 8
2, 5, 9, 14, 20, 27, 35, 43, 43
5, 14, 28, 48, 75, 110, 153, 196, 196
14, 42, 90, 165, 275, 428, 624, 820, 820
42, 132, 297, 572, 1000, 1624, 2444, 3264, 3264
132, 429, 1001, 2001, 3625, 6069, 9333, 12597, 12597
429, 1430, 3431, 7056, 13125, 22458, 35055, 47652, 47652
...
		

References

  • A hexagon arithmetic of E. Lucas.

Formula

T(n,n) = A033191(n).
T(n,n+1) = A033191(n+1).
T(n,n+2) = A033190(n+1).
T(n,n+3) = A094667(n+1).
T(n,n+4) = A093131(n+1) = A030191(n).
T(n,n+5) = A094788(n+2).
T(n,n+6) = A094825(n+3).
T(n,n+7) = T(n,n+8) = A094865(n+3).
Sum_{k, 0<=k<=n} T(n-k,k) = A178381(n).

A093130 Third binomial transform of Fibonacci(3n).

Original entry on oeis.org

0, 2, 20, 160, 1200, 8800, 64000, 464000, 3360000, 24320000, 176000000, 1273600000, 9216000000, 66688000000, 482560000000, 3491840000000, 25267200000000, 182835200000000, 1323008000000000, 9573376000000000
Offset: 0

Views

Author

Paul Barry, Mar 23 2004

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,2];; for n in [3..20] do a[n]:=10*a[n-1]-20*a[n-2]; od; a; # G. C. Greubel, Dec 27 2019
  • Magma
    I:=[0,2]; [n le 2 select I[n] else 10*Self(n-1) - 20*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 27 2019
    
  • Maple
    seq(coeff(series(2*x/(1-10*x+20*x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Dec 27 2019
  • Mathematica
    LinearRecurrence[{10,-20},{0,2},20] (* Harvey P. Dale, Jun 24 2015 *)
    Table[If[EvenQ[n], 2^n*5^(n/2)*Fibonacci[n], 2^n*5^((n-1)/2)*LucasL[n]], {n, 0, 20}] (* G. C. Greubel, Dec 27 2019 *)
  • PARI
    my(x='x+O('x^20)); concat([0], Vec(2*x/(1-10*x+20*x^2))) \\ G. C. Greubel, Dec 27 2019
    
  • Sage
    def A093130_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 2*x/(1-10*x+20*x^2) ).list()
    A093130_list(20) # G. C. Greubel, Dec 27 2019
    

Formula

G.f.: 2*x/(1-10*x+20*x^2).
a(n) = ((5+sqrt(5))^n - (5-sqrt(5))^n)/sqrt(5).
a(n) = 2^n*A093131(n).
a(0)=0, a(1)=2, a(n) = 10*a(n-1) - 20*a(n-2). - Harvey P. Dale, Jun 24 2015
a(2*n) = 2^(2*n)*5^n*Fibonacci(2*n), a(2*n+1) = 2^(2*n+1)*5^n*Lucas(2*n+1). - G. C. Greubel, Dec 27 2019

A171731 Triangle T : T(n,k)= binomial(n,k)*Fibonacci(n-k)= A007318(n,k)*A000045(n-k).

Original entry on oeis.org

0, 1, 0, 1, 2, 0, 2, 3, 3, 0, 3, 8, 6, 4, 0, 5, 15, 20, 10, 5, 0, 8, 30, 45, 40, 15, 6, 0, 13, 56, 105, 105, 70, 21, 7, 0, 21, 104, 224, 280, 210, 112, 28, 8, 0, 34, 189, 468, 672, 630, 378, 168, 36, 9, 0, 55, 340, 945, 1560, 1680, 1260, 630, 240, 45, 10, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 16 2009

Keywords

Comments

Diagonal sums : A112576.
Essentially the same as A094440. - Peter Bala, Jan 06 2015

Examples

			Triangle begins :
0 ;
1,0 ;
1,2,0 ;
2,3,3,0 ;
3,8,6,4,0 ;
5,15,20,10,5,0 ;
...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Binomial[n,k]Fibonacci[n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jan 16 2013 *)

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A000045(n), A001906(n), A093131(n), A099453(n-1), A081574(n), A081575(n) for x = 0,1,2,3,4,5 respectively. Sum_{k, 0<=k<=n} T(n,k)*2^(n-k) = A014445(n).
Showing 1-7 of 7 results.