A102588
Absolute row sums of triangle A102587, which is equal to the matrix inverse of triangle A094531 (the right-hand side of trinomial table A027907).
Original entry on oeis.org
1, 2, 4, 6, 12, 22, 34, 58, 112, 186, 320, 574, 954, 1640, 2926, 5180, 8524, 14928, 25514, 44994, 77674, 138446, 233402, 395832, 704376, 1223902, 2134912, 3628044, 6288414, 10626878, 19171626, 32535060, 57067872, 97164452, 169386950
Offset: 0
-
{a(n)=local(A); A=matrix(n+1,n+1,r,c,if(r
A094527
Triangle T(n,k), read by rows, defined by T(n,k) = binomial(2*n,n-k).
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 20, 15, 6, 1, 70, 56, 28, 8, 1, 252, 210, 120, 45, 10, 1, 924, 792, 495, 220, 66, 12, 1, 3432, 3003, 2002, 1001, 364, 91, 14, 1, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 48620, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1, 184756, 167960
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 2 1
2: 6 4 1
3: 20 15 6 1
4: 70 56 28 8 1
5: 252 210 120 45 10 1
6: 924 792 495 220 66 12 1
7: 3432 3003 2002 1001 364 91 14 1
8: 12870 11440 8008 4368 1820 560 120 16 1
9: 48620 43758 31824 18564 8568 3060 816 153 18 1
10: 184756 167960 125970 77520 38760 15504 4845 1140 190 20 1
... Reformatted ad extended by _Wolfdieter Lang_, Nov 22 2012
From _Paul Barry_, Sep 07 2009: (Start)
Production array is
2, 1,
2, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1 (End)
From _Wolfdieter Lang_, Nov 22 2012: (Start)
Recurrence from the Riordan A-sequence [1,2,1]: T(4,1) = 56 = 1*T(3,0) + 2*T(3,1) + 1*T(3,2) = 1*20 + 2*15 + 1*6.
Recurrence from the Riordan Z-sequence [2,2]: T(7,0) = 3432 = 2*T(6,0) + 2*T(6,1) = 2*924 + 2*792. See the _Philippe Deléham_ comment above. (End)
- Indranil Ghosh, Rows 0..100 of triangle, flattened
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 19.
- A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From _N. J. A. Sloane_, Sep 16 2012
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263
- T. M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
-
A094527 := proc(n,k)
binomial(2*n,n-k) ;
end proc: # R. J. Mathar, Jun 04 2013
-
T[n_, k_] := Binomial[2*n, n - k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
A113682
Expansion of 2/(sqrt(1-2*x-3*x^2)*(1+x+sqrt(1-2*x-3*x^2))).
Original entry on oeis.org
1, 1, 4, 9, 26, 70, 197, 553, 1570, 4476, 12827, 36894, 106471, 308113, 893804, 2598313, 7567466, 22076404, 64498427, 188689684, 552675365, 1620567763, 4756614062, 13974168190, 41088418151, 120906613075, 356035078102
Offset: 0
-
[(Evaluate(GegenbauerPolynomial(n+1, -n-1), -1/2) + (-1)^n)/2: n in [0..40]]; // G. C. Greubel, Apr 04 2024
-
ex[x_]:=Module[{sx=Sqrt[1-2x-3x^2]},2/(sx (1+x+sx))]; CoefficientList[ Series[ ex[x],{x,0,40}],x] (* Harvey P. Dale, May 28 2012 *)
Flatten[{1, Table[Coefficient[Sum[(1 + x + x^2)^k, {k, 0, n}], x^n], {n, 1, 30}]}] (* Vaclav Kotesovec, Jan 08 2016 *)
-
makelist((ultraspherical(n+1,-n-1,-1/2)+(-1)^n)/2,n,0,12); /* Emanuele Munarini, Dec 20 2016 */
-
x='x+O('x^50); Vec(2/(sqrt(1-2*x-3*x^2)*(1+x+sqrt(1-2*x-3*x^2)))) \\ G. C. Greubel, Feb 28 2017
-
[(gegenbauer(n+1,-n-1,-1/2) +(-1)^n)/2 for n in range(41)] # G. C. Greubel, Apr 04 2024
A102587
T(n, k) = (-1)^n*2*[x^k] ChebyshevT(n, (1 - x)/2) with T(0,0) = 1, for 0 <= k <= n, triangle read by rows.
Original entry on oeis.org
1, -1, 1, -1, -2, 1, 2, 0, -3, 1, -1, 4, 2, -4, 1, -1, -5, 5, 5, -5, 1, 2, 0, -12, 4, 9, -6, 1, -1, 7, 7, -21, 0, 14, -7, 1, -1, -8, 12, 24, -30, -8, 20, -8, 1, 2, 0, -27, 9, 54, -36, -21, 27, -9, 1, -1, 10, 15, -60, -15, 98, -35, -40, 35, -10, 1, -1, -11, 22, 66, -99, -77, 154, -22, -66, 44, -11, 1, 2, 0, -48, 16, 180, -120, -196, 216, 9
Offset: 0
Rows begin:
[1],
[ -1,1],
[ -1,-2,1],
[2,0,-3,1],
[ -1,4,2,-4,1],
[ -1,-5,5,5,-5,1],
[2,0,-12,4,9,-6,1],
[ -1,7,7,-21,0,14,-7,1],
[ -1,-8,12,24,-30,-8,20,-8,1],
[2,0,-27,9,54,-36,-21,27,-9,1],
[ -1,10,15,-60,-15,98,-35,-40,35,-10,1],
[ -1,-11,22,66,-99,-77,154,-22,-66,44,-11,1],
...
- Feihu Liu, Ying Wang, Yingrui Zhang, and Zihao Zhang,Hankel Determinants for Convolution of Power Series: An Extension of Cigler's Results, arXiv:2503.17187 [math.CO], 2025. See p. 10.
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
-
Table[If[n==0, 1, CoefficientList[(-1)^n 2 ChebyshevT[n, (1-x)/2], x]], {n, 0, 9}] // Flatten (* Peter Luschny, Mar 07 2018 *)
-
{T(n,k)=local(A); A=matrix(n+1,n+1,r,c,if(r
-
tabl(nn) = {my(m = matrix(nn, nn, n, k, n--; k--; sum(j=0, n, binomial(n,j)*binomial(j,n-k-j)))^(-1)); for (n=1, nn, for (k=1, n, print1(m[n, k], ", ");); print(););} \\ Michel Marcus, Jun 30 2015
A167630
Riordan array (1/(1-x),xm(x)) where m(x) is the g.f. of Motzkin numbers A001006.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 17, 20, 13, 5, 1, 1, 38, 50, 38, 19, 6, 1, 1, 89, 126, 107, 63, 26, 7, 1, 1, 216, 322, 296, 196, 96, 34, 8, 1, 1, 539, 834, 814, 588, 326, 138, 43, 9, 1, 1, 1374, 2187, 2236, 1728, 1052, 507, 190, 53, 10, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 8, 8, 4, 1;
1, 17, 20, 13, 5, 1;
1, 38, 50, 38, 19, 6, 1;
...
-
T:= proc(n, k) option remember; `if`(k=0, 1,
`if`(k>n, 0, T(n-1, k-1)+T(n-1, k)+T(n-1, k+1)))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Apr 20 2018
-
T[, 0] = T[n, n_] = 1;
T[n_, k_] /; 0, ] = 0;
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2019 *)
A111960
Renewal array for central trinomial numbers A002426.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 7, 7, 3, 1, 19, 20, 12, 4, 1, 51, 61, 40, 18, 5, 1, 141, 182, 135, 68, 25, 6, 1, 393, 547, 441, 251, 105, 33, 7, 1, 1107, 1640, 1428, 888, 420, 152, 42, 8, 1, 3139, 4921, 4572, 3076, 1596, 654, 210, 52, 9, 1, 8953, 14762, 14535, 10456, 5880, 2652, 966, 280, 63, 10, 1
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
3, 2, 1;
7, 7, 3, 1;
19, 20, 12, 4, 1;
51, 61, 40, 18, 5, 1;
...
From _Paul Barry_, May 12 2009: (Start)
Production matrix is
1, 1,
2, 1, 1,
0, 2, 1, 1,
-2, 0, 2, 1, 1,
0, -2, 0, 2, 1, 1,
4, 0, -2, 0, 2, 1, 1. (End)
A178618
Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1) * sum_{j=0..infinity} *binomial(n+3*j,3*j)*x^j, in row n, column k.
Original entry on oeis.org
1, 1, 2, 1, 7, 1, 1, 16, 10, 1, 30, 45, 5, 1, 50, 141, 50, 1, 1, 77, 357, 266, 28, 1, 112, 784, 1016, 266, 8, 1, 156, 1554, 3139, 1554, 156, 1, 1, 210, 2850, 8350, 6765, 1452, 55, 1, 275, 4917, 19855, 24068, 9042, 880, 11
Offset: 0
1;
1, 2;
1, 7, 1;
1, 16, 10;
1, 30, 45, 5;
1, 50, 141, 50, 1;
1, 77, 357, 266, 28;
1, 112, 784, 1016, 266, 8;
1, 156, 1554, 3139, 1554, 156, 1;
1, 210, 2850, 8350, 6765, 1452, 55;
1, 275, 4917, 19855, 24068, 9042, 880, 11;
-
A178618 := proc(n,k)
(1-x)^(n+1)*add( binomial(n+3*j,3*j)*x^j,j=0..n+1) ;
coeftayl(%,x=0,k) ;
end proc:
seq(seq(A178618(n,k),k=0..n),n=0..8) ; # R. J. Mathar, Nov 05 2012
-
p[x_, n_] = (-1)^(n + 1)*(-1 + x)^(n + 1)*Sum[Binomial[n + 3*k, 3*k]*x^k, {k, 0, Infinity}]
Flatten[Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]]
A160905
Right hand side of Pascal rhombus A059317.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 9, 8, 3, 1, 29, 22, 13, 4, 1, 82, 72, 42, 19, 5, 1, 255, 218, 146, 70, 26, 6, 1, 773, 691, 476, 261, 107, 34, 7, 1, 2410, 2158, 1574, 914, 428, 154, 43, 8, 1, 7499, 6833, 5122, 3177, 1603, 659, 212, 53, 9, 1, 23575, 21612, 16706, 10816, 5867, 2628, 967
Offset: 0
Triangle begins:
1;
1, 1;
4, 2, 1;
9, 8, 3, 1;
29, 22, 13, 4, 1;
82, 72, 42, 19, 5, 1;
255, 218, 146, 70, 26, 6, 1;
...
Showing 1-8 of 8 results.
Comments