cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A102588 Absolute row sums of triangle A102587, which is equal to the matrix inverse of triangle A094531 (the right-hand side of trinomial table A027907).

Original entry on oeis.org

1, 2, 4, 6, 12, 22, 34, 58, 112, 186, 320, 574, 954, 1640, 2926, 5180, 8524, 14928, 25514, 44994, 77674, 138446, 233402, 395832, 704376, 1223902, 2134912, 3628044, 6288414, 10626878, 19171626, 32535060, 57067872, 97164452, 169386950
Offset: 0

Views

Author

Paul D. Hanna, Jan 22 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A); A=matrix(n+1,n+1,r,c,if(r
    				

A080891 Period 5: repeat [0, 1, -1, -1, 1].

Original entry on oeis.org

0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Sep 23 2003

Keywords

Comments

a(n) = (5/n), where (k/n) is the Kronecker symbol.
L(1;5) (Dirichlet L-series) is the integral from 0 to 1 of the g.f. of a(n+1). Partial sums are A092202. - Paul Barry, Apr 01 2005
From R. J. Mathar, Jul 15 2010, simplified Jul 27 2010: (Start)
The sequence is the real non-principal Dirichlet character mod 5. (The principal character mod 5 is A011558.)
Associated Dirichlet L-functions are, for example, L(1,chi) = Sum_{n>=1} a(n)/n = A086466 or L(2,chi) = Sum_{n>=1} a(n)/n^2 = 0.7062114... = 4*Pi^2/(25*sqrt(5)). (End)
This sequence {a(n)} appears in the formula 2*exp(2*Pi*n*i/5) = (A(n) + a(n)*phi) + (C(n) + D(n)*phi)*sqrt(2 + phi)*i, with the golden section phi, i = sqrt(-1) and A(n) = A164116(n+5), C(n) = A156174(n+4) and D(n) = A010891(n+3) for n >= 0. See a comment on A164116. - Wolfdieter Lang, Feb 26 2014
In Gil and Robins 2003 on page 33 the g.f. is denoted by f_{4, 4}(x). - Michael Somos, Sep 04 2015

Examples

			G.f. = x - x^2 - x^3 + x^4 + x^6 - x^7 - x^8 + x^9 + x^11 - x^12 - x^13 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=5, Chi_2(n).
  • H. Cohn, Advanced Number Theory, Dover Publications, Inc., 1962, p. 173.

Crossrefs

Programs

  • Magma
    &cat [[0, 1, -1, -1, 1]^^30]; // Wesley Ivan Hurt, Dec 26 2016
  • Maple
    A080891 := proc(n) numtheory[jacobi](n,5) ; end proc: seq(A080891(n),n=0..100) ; # R. J. Mathar, Jul 29 2010
  • Mathematica
    a[ n_] := Mod[n^2 + 1, 5] - 1; (* Michael Somos, May 24 2015 *)
    a[ n_] := KroneckerSymbol[ n, 5]; (* Michael Somos, May 24 2015 *)
    a[ n_] := {1, -1, -1, 1, 0}[[Mod[n, 5, 1]]]; (* Michael Somos, May 24 2015 *)
    PadRight[{},120,{0,1,-1,-1,1}] (* Harvey P. Dale, Nov 30 2023 *)
  • MuPAD
    numlib::jacobi(n,5)$ n=0..100 // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=kronecker(5,n) /* Also, a(n)=kronecker(n,5) */
    
  • PARI
    {a(n) = (n^2 + 1)%5 - 1}; /* Michael Somos, Dec 01 2004 */
    

Formula

If n == 0 (mod 5) a(n)=0; if n == 1 or 4 (mod 5) a(n)=1; if n == 2 or 3 (mod 5) a(n)=-1.
G.f.: x*(1-x^2)/(1+x+x^2+x^3+x^4). - Paul Barry, Apr 01 2005
G.f.: x * (1 - x) * (1 - x^2) / (1 - x^5). a(n) = a(-n) = a(n+5) for all n in Z. - Michael Somos, Jun 17 2005
Euler transform of length 5 sequence [-1, -1, 0, 0, 1]. - Michael Somos, Jun 17 2005
Transform of the Fibonacci numbers by the Riordan array A102587. - Paul Barry, Jul 14 2005
a(n) = -1 + floor(12002/99999*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 04 2013
a(n) = -1 + floor(137/242*3^(n+1)) mod 3. - Hieronymus Fischer, Jan 04 2013
|A011558(n)| = |a(n)| = |A100047(n)|. - Michael Somos, May 24 2015
a(n) is completely multiplicative with a(p) = Kronecker(5, p). - Michael Somos, Jun 17 2015
From Wesley Ivan Hurt, Dec 26 2016: (Start)
a(n) = a(n-5) for n > 4.
a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) = 0 for n > 3.
a(n) = 1 + 2*floor((n-4)/5) - 2*floor((n-2)/5) + floor((n-1)/5) - floor(n/5). (End)
a(n) = 2*(cos(2*n*Pi/5) - cos(4*n*Pi/5))/sqrt(5). - Wesley Ivan Hurt, Sep 26 2018
a(n) = a(n-1)*a(n-4) - a(n-2)*a(n-3) for n > 3. - Nicolas Bělohoubek, May 21 2024
a(n) = n^2 - 5*floor((n^2+1)/5). - Aaron J Grech, Aug 28 2024

Extensions

Name specified by Wolfdieter Lang, Feb 26 2014

A091337 a(n) = (2/n), where (k/n) is the Kronecker symbol.

Original entry on oeis.org

0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 30 2003

Keywords

Comments

Sinh(1) in 'reflected factorial' base is 1.01010101010101010101010101010101010101010101... see A073097 for cosh(1). - Robert G. Wilson v, May 04 2005
A non-principal character for the Dirichlet L-series modulo 8, see arXiv:1008.2547 and L-values Sum_{n >= 1} a(n)/n^s in eq (318) by Jolley. - R. J. Mathar, Oct 06 2011 [The other two non-principal characters are A101455 = {(-4/n)} and A188510 = {(-2/n)}. - Jianing Song, Nov 14 2024]
Period 8: repeat [0, 1, 0, -1, 0, -1, 0, 1]. - Wesley Ivan Hurt, Sep 07 2015 [Adapted by Jianing Song, Nov 14 2024 to include a(0) = 0.]
a(n) = (2^(2i+1)/n), where (k/n) is the Kronecker symbol and i >= 0. - A.H.M. Smeets, Jan 23 2018

Examples

			G.f. = x - x^3 - x^5 + x^7 + x^9 - x^11 - x^13 + x^15 + x^17 - x^19 - x^21 + ...
		

References

  • L. B. W. Jolley, Summation of series, Dover (1961).

Crossrefs

Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), this sequence (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • Magma
    [(n mod 2) * (-1)^((n+1) div 4)  : n in [1..100]]; // Vincenzo Librandi, Oct 31 2014
  • Maple
    A091337:= n -> [0, 1, 0, -1, 0, -1, 0, 1][(n mod 8)+1]: seq(A091337(n), n=1..100); # Wesley Ivan Hurt, Sep 07 2015
  • Mathematica
    KroneckerSymbol[Range[100], 2] (* Alonso del Arte, Oct 30 2014 *)
  • PARI
    {a(n) = (n%2) * (-1)^((n+1)\4)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = kronecker( 2, n)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = [0, 1, 0, -1, 0, -1, 0, 1][n%8 + 1]}; /* Michael Somos, Jul 17 2009 */
    

Formula

Euler transform of length 8 sequence [0, -1, 0, -1, 0, 0, 0, 1]. - Michael Somos, Jul 17 2009
a(n) is multiplicative with a(2^e) = 0^e, a(p^e) = 1 if p == 1, 7 (mod 8), a(p^e) = (-1)^e if p == 3, 5 (mod 8). - Michael Somos, Jul 17 2009
G.f.: x*(1 - x^2)/(1 + x^4). a(n) = -a(n + 4) = a(-n) for all n in Z. a(2*n) = 0. a(2*n + 1) = A087960(n). - Michael Somos, Apr 10 2011
Transform of Pell numbers A000129 by the Riordan array A102587. - Paul Barry, Jul 14 2005
a(n) = (2/n) = (n/2), Charles R Greathouse IV explained. - Alonso del Arte, Oct 31 2014
a(n) = (1 - (-1)^n)*(-1)^(n/4 - 1/8 - (-1)^n/8 + (-1)^((2*n + 1 - (-1)^n)/4)/4)/2. - Wesley Ivan Hurt, Sep 07 2015
From Jianing Song, Nov 14 2018: (Start)
a(n) = sqrt(2)*sin(Pi*n/2)*sin(Pi*n/4).
E.g.f.: sqrt(2)*cos(x/sqrt(2))*sinh(x/sqrt(2)).
Moebius transform of A035185.
a(n) = A101455(n)*A188510(n). (End)
a(n) = Sum_{i=1..n} (-1)^(i + floor((i-3)/4)). - Wesley Ivan Hurt, Apr 27 2020
Sum_{n>=1} a(n)/n = A196525. Sum_{n>=1} a(n)/n^2 = A328895. Sum_{n>=1} a(n)/n^3 = A329715. Sum_{n>=1} a(n)/n^4 = A346728. - R. J. Mathar, Dec 17 2024

Extensions

a(0) prepended by Jianing Song, Nov 14 2024

A110161 Expansion of x*(1-x^2)/(1-x^2+x^4).

Original entry on oeis.org

0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Transform of A002605 by the Riordan array A102587. Denominator is the 12th cyclotomic polynomial.

Crossrefs

Programs

Formula

Periodic of length 12: 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1. - T. D. Noe, Dec 12 2006
From Michael Somos, Jun 11 2007: (Start)
Euler transform of length 12 sequence [0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1].
a(n) is multiplicative with a(2^e) = a(3^e) = 0^e, a(p^e) = 1 if p == 1, 11 (mod 12), a(p^e) = (-1)^e if p == 5, 7 (mod 12).
a(n) = a(-n) = -a(n + 6) for all n in Z.
G.f.: x * (1 - x^4) * (1 - x^6) / (1 - x^12). (End)
a(2*n - 1) = A010892(n). - Michael Somos, Jan 29 2015
a(n) = A014021(n+1). - R. J. Mathar, Nov 13 2023

Extensions

Corrected by T. D. Noe, Dec 12 2006

A110162 Riordan array ((1-x)/(1+x), x/(1+x)^2).

Original entry on oeis.org

1, -2, 1, 2, -4, 1, -2, 9, -6, 1, 2, -16, 20, -8, 1, -2, 25, -50, 35, -10, 1, 2, -36, 105, -112, 54, -12, 1, -2, 49, -196, 294, -210, 77, -14, 1, 2, -64, 336, -672, 660, -352, 104, -16, 1, -2, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 2, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Inverse of Riordan array A094527. Rows sums are A099837. Diagonal sums are A110164. Product of Riordan array A102587 and inverse binomial transform (1/(1+x), x/(1+x)).
Coefficients of polynomials related to Cartan matrices of types C_n and B_n: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2), with p(x,0) = 1; p(x,1) = 2-x; p(x,2) = x^2-4*x-2. - Roger L. Bagula, Apr 12 2008
From Wolfdieter Lang, Nov 16 2012: (Start)
The alternating row sums are given in A219233.
For n >= 1 the row polynomials in the variable x^2 are R(2*n,x):=2*T(2*n,x/2) with Chebyshev's T-polynomials. See A127672 and also the triangle A127677.
(End)
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x)^2 and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = (1 - 2*x + sqrt(1 - 4*x))/2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)

Examples

			Triangle T(n,k) begins:
m\k  0    1    2     3     4     5     6    7    8   9 10 ...
0:   1
1:  -2    1
2:   2   -4    1
3:  -2    9   -6     1
4:   2  -16   20    -8     1
5:  -2   25  -50    35   -10     1
6:   2  -36  105  -112    54   -12     1
7:  -2   49 -196   294  -210    77   -14    1
8:   2  -64  336  -672   660  -352   104  -16    1
9:  -2   81 -540  1386 -1782  1287  -546  135  -18   1
10:  2 -100  825 -2640  4290 -4004  2275 -800  170 -20  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 16 2012
Row polynomial n=2: P(2,x) = 2 - 4*x + x^2. R(4,x):= 2*T(4,x/2) = 2 - 4*x^2 + x^4. For P and R see a comment above. - _Wolfdieter Lang_, Nov 16 2012.
		

Crossrefs

Cf. A128411. See A127677 for an almost identical triangle.

Programs

  • Magma
    /* As triangle */ [[(-1)^(n-k)*(Binomial(n+k,n-k) + Binomial(n+k-1,n-k-1)): k in [0..n]]: n in [0.. 12]]; // Vincenzo Librandi, Jun 30 2015
    
  • Mathematica
    Table[If[n==0 && k==0, 1, (-1)^(n-k)*(Binomial[n+k, n-k] + Binomial[n+k-1, n-k-1])], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 16 2018 *)
  • PARI
    {T(n,k) = (-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1))};
    for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 16 2018
    
  • Sage
    [[(-1)^(n-k)*(binomial(n+k,n-k) + binomial(n+k-1,n-k-1)) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 16 2018

Formula

T(n,k) = (-1)^(n-k)*(C(n+k,n-k) + C(n+k-1,n-k-1)), with T(0,0) = 1. - Paul Barry, Mar 22 2007
From Wolfdieter Lang, Nov 16 2012: (Start)
O.g.f. row polynomials P(n,x) := Sum(T(n,k)*x^k, k=0..n): (1-z^2)/(1+(x-2)*z+z^2) (from the Riordan property).
O.g.f. column No. k: ((1-x)/(1+x))*(x/(1+x)^2)^k, k >= 0.
T(0,0) = 1, T(n,k) = (-1)^(n-k)*(2*n/(n+k))*binomial(n+k,n-k), n>=1, and T(n,k) = 0 if n < k. (From the Chebyshev T-polynomial formula due to Waring's formula.)
(End)
T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 29 2013

A094531 Array read by rows: right-hand side of triangle A027907 of trinomial coefficients.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 6, 3, 1, 19, 16, 10, 4, 1, 51, 45, 30, 15, 5, 1, 141, 126, 90, 50, 21, 6, 1, 393, 357, 266, 161, 77, 28, 7, 1, 1107, 1016, 784, 504, 266, 112, 36, 8, 1, 3139, 2907, 2304, 1554, 882, 414, 156, 45, 9, 1, 8953, 8350, 6765, 4740, 2850, 1452, 615, 210, 55
Offset: 0

Views

Author

Paul Barry, May 07 2004

Keywords

Comments

Sometimes called a Motzkin triangle, although that name is usually reserved for A026300.
Expand (1+x+x^2)^n and take last (nonzero) coefficient of first row, last two coefficients of second row, etc.
Equals A094531*(1,xc(-x^2)) where c(x) is the g.f. of A000108. - Paul Barry, May 12 2009
Coefficients of Faber polynomials for (1/x+1+x): Fa(n,x) = Sum_{k=0..n} T(n,k)*x^k, g.f.: -log((sqrt(-3*t^2-2*t+1)-t+1)/2-t*x) = Sum_{n>0} Fa(n,x)*t^n/n. - Vladimir Kruchinin, Jul 01 2013

Examples

			Triangle begins:
    1;
    1,   1;
    3,   2,   1;
    7,   6,   3,   1;
   19,  16,  10,   4,   1;
   51,  45,  30,  15,   5,   1;
  141, 126,  90,  50,  21,   6,   1;
  393, 357, 266, 161,  77,  28,   7,   1;
  ...
		

Crossrefs

Binomial transform is triangle A094527. Row sums are A027914.
Cf. A111808 (row reversed).

Programs

  • Maple
    T := (n, k) -> simplify(GegenbauerC(n-k, -n, -1/2)):
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 12 2016
  • Mathematica
    max = 10; se = Series[ -Log[ (Sqrt[-3*t^2 - 2*t + 1] - t + 1)/2 - t*x], {t, 0, max + 1}, {x, 0, max}]; a[n_, k_] := SeriesCoefficient[se, {t, 0, n}, {x, 0, k}]*n; a[0, 0] = 1; Table[a[n, k], {n, 0, max }, {k, 0, n}] // Flatten  (* Jean-François Alcover, Jul 02 2013, after Vladimir Kruchinin *)
    Table[Binomial[n, k] Hypergeometric2F1[(k - n)/2, (k - n + 1)/2, k + 1, 4], {n, 0, 9}, {k, 0, n}] // Flatten (* or *)
    Table[If[n == 0, 1, GegenbauerC[n - k, -n, -1/2]], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, May 12 2016 *)

Formula

Riordan array ( 1/sqrt(1-2*x-3*x^2), (1-x-sqrt(1-2*x-3*x^2))/(2*x) ). - N. J. A. Sloane, Jun 02 2005
Product of Riordan arrays (1/(1-x), x/(1-x)) (Pascal's triangle, A007318) and (1/sqrt(1-4x^2), (1-sqrt(1-4*x^2))/(2*x)) (A108044). Inverse is A102587. - Paul Barry, Jul 14 2005
Column k has e.g.f. exp(x)*Bessel_I(k, 2x). - Paul Barry, Jul 14 2005
T(n, k) = Sum_{i=0..n} C(n-k-i, i)*C(n, k+i). - Paul Barry, Nov 04 2005
T(n, k) = Sum_{j=0..n} C(n,j)*C(j,n-k-j). - Paul Barry, Oct 25 2006
From Paul Barry, May 12 2009: (Start)
Production matrix is
1, 1;
2, 1, 1;
0, 1, 1, 1;
0, 0, 1, 1, 1;
0, 0, 0, 1, 1, 1; (End)
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = (1 - x -sqrt(1 - 2*x - 3*x^2))/(2*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan, Example 1.1).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = 1 + x + x^2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)
From Peter Luschny, May 12 2016: (Start)
T(n,k) = binomial(n, k)*hypergeom([(k-n)/2, (k-n+1)/2], [k+1], 4):
T(n,k) = GegenbauerC(n-k, -n, -1/2). (End)

A092220 Expansion of x*(1-x)/ ((1+x)*(1-x+x^2)) in powers of x.

Original entry on oeis.org

0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1
Offset: 0

Views

Author

Paul Barry, Feb 25 2004

Keywords

Comments

Period 6: repeat [0, 1, -1, 0, -1, 1]. - Joerg Arndt, Aug 28 2024
Transform of the Jacobsthal numbers A001045 under the Riordan array A102587. - Paul Barry, Jul 14 2005
The BINOMIAL transform generates (-1)^(n+1)*A024495(n+1). - R. J. Mathar, Apr 07 2008

Examples

			G.f. = x - x^2 - x^4 + x^5 + x^7 - x^8 - x^10 + x^11 + x^13 - x^14 - x^16 + x^17 + ...
		

Crossrefs

Programs

  • Maple
    seq(2*sin(Pi*n^2/3)/sqrt(3), n=0..100); # Ridouane Oudra, Oct 30 2024
  • Mathematica
    a[ n_] := {1, -1, 0, -1, 1, 0}[[Mod[n, 6, 1]]]; (* Michael Somos, Aug 25 2014 *)
    LinearRecurrence[{0,0,-1},{0,1,-1},120] (* or *) PadRight[{},120,{0,1,-1,0,-1,1}] (* Harvey P. Dale, Mar 30 2016 *)
  • PARI
    {a(n) = [0, 1, -1, 0, -1, 1][n%6 + 1]}; /* Michael Somos, Apr 10 2011 */

Formula

a(n) = 2*cos(Pi*n/3)/3 - 2(-1)^n/3.
Multiplicative with a(2^e) = -1, a(3^e) = 0, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005
From Michael Somos, Apr 10 2011: (Start)
Euler transform of length 6 sequence [-1, 0, -1, 0, 0, 1].
Moebius transform is length 6 sequence [1, -2, -1, 0, 0, 2].
G.f.: x * (1 - x) * (1 - x^3) / (1 - x^6).
a(n) = a(-n), a(n + 3) = -a(n), a(3*n) = 0, for all n in Z. (End)
a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4). - Paul Curtz, Dec 10 2007
a(n) = ( (-1)^floor((n+1)/3) - (-1)^n )/2. - Bruno Berselli, Jul 09 2013
a(n) = S(n-1,-1), n >= 0, with Chebyshev's S-polynomials evaluated at -1 (see A049310). - Wolfdieter Lang, Sep 06 2013
a(n) = A131531(n+2) - A131531(n+1) . - R. J. Mathar, Nov 28 2019
a(n) = A128834(n^2). - Ridouane Oudra, Oct 30 2024
E.g.f.: 2*(exp(x/2)*cos(sqrt(3)*x/2) - cosh(x) + sinh(x))/3. - Stefano Spezia, Oct 31 2024
Dirichlet g.f.: zeta(s) * (1 - 1/2^(s-1)) * (1 - 1/3^s). - Amiram Eldar, Jun 09 2025
Showing 1-7 of 7 results.