A097613
a(n) = binomial(2n-3,n-1) + binomial(2n-2,n-2).
Original entry on oeis.org
1, 2, 7, 25, 91, 336, 1254, 4719, 17875, 68068, 260338, 999362, 3848222, 14858000, 57500460, 222981435, 866262915, 3370764540, 13135064250, 51250632510, 200205672810, 782920544640, 3064665881940, 12007086477750, 47081501377326, 184753963255176, 725510446350004
Offset: 1
a(2) = 2 because UUDDUD and UDUUDD each have maximum pyramid size = 2.
- Michael De Vlieger, Table of n, a(n) for n = 1..1664
- Paul Barry, Extensions of Riordan Arrays and Their Applications, Mathematics (2025) Vol. 13, No. 2, 242. See p. 16.
- Gi-Sang Cheon, Hana Kim, and Louis W. Shapiro, Mutation effects in ordered trees, arXiv preprint arXiv:1410.1249 [math.CO], 2014.
- Milan Janjic, Two Enumerative Functions
- Toufik Mansour and I. L. Ramirez, Enumerations of polyominoes determined by Fuss-Catalan words, Australas. J. Combin. 81 (3) (2021) 447-457, table 2.
- Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
Same as
A024482 except for first term.
-
Flat(List([1..30], n->Binomial(2*n-3, n-1)+Binomial(2*n-2, n-2))); # Stefano Spezia, Oct 27 2018
-
a097613 n = a209561 (2 * n - 1) n -- Reinhard Zumkeller, Dec 26 2012
-
[((3*n-2)*Catalan(n-1)+0^(n-1))/2: n in [1..40]]; // G. C. Greubel, Apr 04 2024
-
Z:=(1-z-sqrt(1-4*z))/sqrt(1-4*z)/2: Zser:=series(Z, z=0, 32): seq (ceil(coeff(Zser, z, n)), n=1..22); # Zerinvary Lajos, Jan 16 2007
a := n -> `if`(n=1, 1, (2-3*n)/(4-8*n)*binomial(2*n, n)):
seq(a(n), n=1..27); # Peter Luschny, Sep 06 2014
-
a[1]=1; a[n_] := (3n-2)(2n-3)!/(n!(n-2)!); Array[a, 27] (* Jean-François Alcover, Oct 27 2018 *)
-
a(n)=binomial(2*n-3,n-1)+binomial(2*n-2,n-2) \\ Charles R Greathouse IV, Aug 05 2013
-
@CachedFunction
def A097613(n):
if n < 3: return n
return (6*n-4)*(2*n-3)*A097613(n-1)/(n*(3*n-5))
[A097613(n) for n in (1..27)] # Peter Luschny, Sep 06 2014
A158793
Triangle read by rows: product of A130595 and A092392 considered as infinite lower triangular arrays.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 19, 9, 5, 1, 1, 51, 26, 11, 6, 1, 1, 141, 70, 34, 13, 7, 1, 1, 393, 197, 92, 43, 15, 8, 1, 1, 1107, 553, 265, 117, 53, 17, 9, 1, 1, 3139, 1570, 751, 346, 145, 64, 19, 10, 1, 1, 8953, 4476, 2156, 991, 441, 176, 76, 21, 11, 1, 1
Offset: 0
First rows of the triangle:
1;
1, 1;
3, 1, 1;
7, 4, 1, 1;
19, 9, 5, 1, 1;
51, 26, 11, 6, 1, 1;
141, 70, 34, 13, 7, 1, 1;
393, 197, 92, 43, 15, 8, 1, 1;
1107, 553, 265, 117, 53, 17, 9, 1, 1;
3139, 1570, 751, 346, 145, 64, 19, 10, 1, 1;
8953, 4476, 2156, 991, 441, 176, 76, 21, 11, 1, 1;
-
A158793 := proc (n, k)
add((-1)^(n+j)*binomial(n, j)*binomial(2*j-k, j-k), j = k..n);
end proc:
seq(seq(A158793(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
-
T[n_, k_] := (-1)^(k + n) Binomial[n, k] HypergeometricPFQ[{k/2 + 1/2, k/2 + 1, k - n}, {k + 1, k + 1}, 4];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Jul 17 2021 *)
A178301
Triangle T(n,k) = binomial(n,k)*binomial(n+k+1,n+1) read by rows, 0 <= k <= n.
Original entry on oeis.org
1, 1, 3, 1, 8, 10, 1, 15, 45, 35, 1, 24, 126, 224, 126, 1, 35, 280, 840, 1050, 462, 1, 48, 540, 2400, 4950, 4752, 1716, 1, 63, 945, 5775, 17325, 27027, 21021, 6435, 1, 80, 1540, 12320, 50050, 112112, 140140, 91520, 24310, 1, 99, 2376, 24024, 126126, 378378, 672672, 700128, 393822, 92378
Offset: 0
n=0: 1;
n=1: 1, 3;
n=2: 1, 8, 10;
n=3: 1, 15, 45, 35;
n=4: 1, 24, 126, 224, 126;
n=5: 1, 35, 280, 840, 1050, 462;
n=6: 1, 48, 540, 2400, 4950, 4752, 1716;
n=7: 1, 63, 945, 5775, 17325, 27027, 21021, 6435;
-
A178301 := proc(n,k)
binomial(n,k)*binomial(n+k+1,n+1) ;
end proc: # R. J. Mathar, Mar 24 2013
R := proc(n) add((-1)^(n+k)*(2*k+1)*orthopoly:-P(k,2*x+1)/(n+1), k=0..n) end:
for n from 0 to 6 do seq(coeff(R(n), x, k), k=0..n) od; # Peter Luschny, Aug 25 2021
-
Flatten[Table[Binomial[n,k]Binomial[n+k+1,n+1],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 23 2014 *)
-
create_list(binomial(n,k)*binomial(n+k+1,n+1),n,0,12,k,0,n); /* Emanuele Munarini, Dec 16 2016 */
-
R(n,x) = sum(k=0,n, (-1)^(n+k) * (2*k+1) * pollegendre(k,2*x+1)) / (n+1); \\ Max Alekseyev, Aug 25 2021
A217539
Number of Dyck paths of semilength n which satisfy the condition: number of returns + number of hills < number of peaks.
Original entry on oeis.org
0, 0, 0, 1, 4, 17, 66, 252, 946, 3523, 13054, 48248, 178146, 657813, 2430962, 8995521, 33342588, 123822171, 460772982, 1718304786, 6421729878, 24051429321, 90272123682, 339522804129, 1279556832780, 4831639423695, 18278491474726, 69272752632502, 262981858878706
Offset: 0
a(4) = 4 count the Dyck words
[11010100] (()()()) [11011000] (()(()))
[11100100] ((())()) [11101000] ((()())) .
-
A217539 := proc(n) local k; if n = 0 then 0 else (2*n)!/(n!^2*(n+1)) - add((n-1)!/(((n-1-k)!*iquo(k,2)!^2)*(iquo(k,2)+1)), k=0..n-1) fi end: seq(A217539(i), i=0..28);
-
MotzkinNumber[n_] := Sum[ Binomial[n+1, k]*Binomial[n+1-k, k-1], {k, 0, Ceiling[(n+1)/2]}]/(n+1); a[0] = a[1] = 0; a[n_] := CatalanNumber[n] - (n-1)*MotzkinNumber[n-2] - MotzkinNumber[n-1]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jun 27 2013, from 3rd formula *)
-
def A217539(n):
@CachedFunction
def M(n): return (3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2) if n>1 else 1
@CachedFunction
def catalan(n): return ((4*n-2)*catalan(n-1))/(n+1) if n>0 else 1
return catalan(n) - (n-1)*M(n-2) - M(n-1) if n!=0 else 0
[A217539(i) for i in (0..28)]
A217540
Scambler statistic on Dyck paths. Triangle T(n, k) read by rows, n >= 0, -n <= k <= n, T(n, k) is the number of Dyck paths of semilength n and k = number of returns + number of hills - number of peaks.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 1, 0, 0, 1, 3, 4, 2, 3, 0, 1, 0, 0, 1, 6, 10, 9, 8, 3, 4, 0, 1, 0, 0, 1, 10, 25, 30, 26, 17, 13, 4, 5, 0, 1, 0, 0, 1, 15, 56, 90, 90, 70, 49, 27, 19, 5, 6, 0, 1, 0, 0, 1, 21, 112, 245, 301, 266, 197, 128, 80, 39, 26, 6, 7, 0, 1
Offset: 0
[n\k] -8,-7,-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8
-----------------------------------------------------------------------
[ 0 ] 1,
[ 1 ] 0, 0, 1,
[ 2 ] 0, 0, 1, 0, 1,
[ 3 ] 0, 0, 1, 1, 2, 0, 1,
[ 4 ] 0, 0, 1, 3, 4, 2, 3, 0, 1,
[ 5 ] 0, 0, 1, 6, 10, 9, 8, 3, 4, 0, 1,
[ 6 ] 0, 0, 1, 10, 25, 30, 26, 17, 13, 4, 5, 0, 1,
[ 7 ] 0, 0, 1, 15, 56, 90, 90, 70, 49, 27, 19, 5, 6, 0, 1,
[ 8 ] 0, 0, 1, 21, 112, 245, 301, 266, 197, 128, 80, 39, 26, 6, 7, 0, 1
.
T(5, -2) = 6 counting the Dyck words
[1101011000] (()()(())) [1101100100] (()(())()) [1101101000] (()(()()))
[1110010100] ((())()()) [1110100100] ((()())()) [1110101000] ((()()())) .
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, z, expand(`if`(y=0, z, 1)*(b(x-1, y+1, true)
+b(x-1, y-1, false)*`if`(t and y<>1, 1/z, 1)))))
end:
T:= n-> `if`(n=0, 1, (p-> seq(coeff(p, z, i), i=-n..n))
(b(2*n-1, 1, true))):
seq(T(n), n=0..10); # Alois P. Heinz, Jun 10 2014
-
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, z, Expand[If[y == 0, z, 1]*(b[x-1, y+1, True]+b[x-1, y-1, False]*If[t && y != 1, 1/z, 1])]]]; T[n_] := If[n == 0, 1, Function[p, Table[Coefficient[p, z, i], {i, -n, n}]][b[2*n-1, 1, True]]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 24 2016, after Alois P. Heinz *)
-
def A217540(n, k):
def characteristic(d):
count = 1
h = d.heights()
for i in (1..len(d)-1):
if d[i-1]==1 and d[i]==0: count -= 1
if h[i]==0: count +=1
else:
if h[i-1]==0 and h[i+1]==0: count += 1
return count
if n == 0: return 1
count = 0
for d in DyckWords(n):
if k == characteristic(d): count += 1
return count
for n in (0..6): [A217540(n, k) for k in (-n..n)]
A164611
Expansion of (1 + x + 2*x^2 - x^3)/(1 - 2*x + 3*x^2 - 2*x^3 + x^4).
Original entry on oeis.org
1, 3, 5, 2, -6, -11, -5, 9, 17, 8, -12, -23, -11, 15, 29, 14, -18, -35, -17, 21, 41, 20, -24, -47, -23, 27, 53, 26, -30, -59, -29, 33, 65, 32, -36, -71, -35, 39, 77, 38, -42, -83, -41, 45, 89, 44, -48, -95, -47, 51, 101
Offset: 0
-
CoefficientList[Series[(1+x+2x^2-x^3)/(1-2x+3x^2-2x^3+x^4),{x,0,80}],x] (* or *) LinearRecurrence[{2,-3,2,-1},{1,3,5,2},80] (* Harvey P. Dale, May 28 2013 *)
-
x='x+O('x^50); Vec((1 +x +2*x^2 -x^3)/(1 -2*x +3*x^2 -2*x^3 +x^4)) \\ G. C. Greubel, Aug 10 2017
A260056
Irregular triangle read by rows: coefficients T(n, k) of certain polynomials p(n, x) with exponents in increasing order, n >= 0 and 0 <= k <= 2*n.
Original entry on oeis.org
1, 2, 1, 1, 3, 3, 4, 2, 1, 4, 6, 10, 9, 7, 3, 1, 5, 10, 20, 25, 26, 19, 11, 4, 1, 6, 15, 35, 55, 71, 70, 56, 34, 16, 5, 1, 7, 21, 56, 105, 161, 196, 197, 160, 106, 55, 22, 6, 1, 8, 28, 84, 182, 322, 462, 554, 553, 463, 321, 183, 83, 29, 7, 1, 9, 36, 120, 294, 588, 966, 1338, 1569, 1570, 1337, 967, 587, 295, 119, 37, 8, 1, 10, 45, 165, 450, 1002, 1848, 2892, 3873, 4477, 4476, 3874
Offset: 0
The irregular triangle T(n,k) begins:
n\k: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
0 1;
1 2 1 1;
2 3 3 4 2 1;
3 4 6 10 9 7 3 1;
4 5 10 20 25 26 19 11 4 1;
5 6 15 35 55 71 70 56 34 16 5 1;
6 7 21 56 105 161 196 197 160 106 55 22 6 1;
7 8 28 84 182 322 462 554 553 463 321 183 83 29 7 1;
etc.
The polynomial corresponding to row 2 is p(2,x) = 3+3*x+4*x^2+2*x^3+x^4.
Cf.
A000027 (col 0),
A000217 (col 1),
A000292 (col 2),
A001590,
A002426,
A004524,
A005582 (col 3),
A008937,
A027907,
A095662 (col 5),
A113682,
A246437.
-
A027907[n_, k_] := Sum[Binomial[n, j]*Binomial[j, k - j], {j, 0, n}]; Table[ Sum[A027907[j, k], {j, 0, n}], {n,0,10}, {k, 0, 2*n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)
Showing 1-7 of 7 results.
Comments