cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A241573 2^p + 3 where p is prime.

Original entry on oeis.org

7, 11, 35, 131, 2051, 8195, 131075, 524291, 8388611, 536870915, 2147483651, 137438953475, 2199023255555, 8796093022211, 140737488355331, 9007199254740995, 576460752303423491, 2305843009213693955, 147573952589676412931, 2361183241434822606851
Offset: 1

Views

Author

Vincenzo Librandi, Apr 29 2014

Keywords

Crossrefs

Cf. sequences of the form 2^p+k with p prime: A034785 (k=0), A001348 (k=-1), A098640 (k=1), A241676 (k=-3), this sequence (k=3), A241678 (k=-5), A241677 (k=5), A098815 (k=-7), A241679 (k=7), A098231 (k=-11), A241680 (k=11).

Programs

  • Magma
    [2^p+3: p in PrimesUpTo(100)];
    
  • Mathematica
    Table[2^Prime[n] + 3, {n, 20}]
  • Sage
    [2^p+3 for p in primes(100)] # Bruno Berselli, Apr 29 2014

A235712 Least prime p < prime(n) with 2^p + 1 a quadratic nonresidue modulo prime(n), or 0 if such a prime p does not exist.

Original entry on oeis.org

0, 2, 0, 2, 7, 2, 2, 5, 2, 11, 11, 2, 7, 2, 2, 2, 5, 5, 2, 5, 2, 5, 2, 5, 2, 7, 2, 2, 5, 2, 2, 13, 2, 5, 13, 5, 2, 2, 2, 2, 5, 11, 5, 2, 2, 7, 5, 2, 2, 23, 2, 7, 5, 5, 2, 2, 5, 5, 2, 7, 2, 2, 2, 5, 2, 2, 7, 2, 2, 5, 2, 7, 2, 2, 11, 2, 5, 2, 5, 5, 5, 7, 7, 2, 5, 2, 5, 2, 7, 2, 2, 7, 2, 13, 7, 2, 5, 5, 2, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 20 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
Note that 2^3 + 1 = 3^2 is a quadratic residue modulo any prime p > 3. Also, there is no prime p < prime(316) = 2089 with 2^p + 1 a primitive root modulo 2089.
See also A234972 and A235709 for similar conjectures.

Examples

			a(4) = 2 since 2^2 + 1 = 5 is a quadratic nonresidue modulo prime(4) = 7.
		

Crossrefs

Programs

  • Mathematica
    Do[Do[If[JacobiSymbol[2^(Prime[k])+1,Prime[n]]==-1,Print[n," ",Prime[k]];Goto[aa]],{k,1,n-1}];
    Print[n," ",0];Label[aa];Continue,{n,1,100}]

A152099 a(n) = (2^prime(n) - 1)*(2^prime(n) + 1) = 2^(2*prime(n)) - 1.

Original entry on oeis.org

15, 63, 1023, 16383, 4194303, 67108863, 17179869183, 274877906943, 70368744177663, 288230376151711743, 4611686018427387903, 18889465931478580854783, 4835703278458516698824703, 77371252455336267181195263, 19807040628566084398385987583
Offset: 1

Views

Author

Roger L. Bagula, Nov 24 2008

Keywords

Comments

Idea resulted from seqfan posts by Artur Jasinski.

Crossrefs

Programs

  • Mathematica
    Table[(2^Prime[n] - 1)*(2^Prime[n] + 1), {n, 1, 20}]
  • Python
    from sympy import prime
    def A152099(n): return (1<<(prime(n)<<1))-1 # Chai Wah Wu, Jun 26 2023

Formula

a(n) = A001348(n) * A098640(n).
a(n) = A034785(n)^2 - 1.
a(n) = A000302(A000040(n)) - 1.

A184084 Decimal expansion of product_{p=primes} (1-1/(2^p+1)).

Original entry on oeis.org

6, 8, 3, 7, 9, 2, 8, 4, 2, 3, 5, 9, 4, 7, 4, 3, 6, 8, 9, 9, 4, 3, 6, 3, 6, 4, 3, 4, 1, 0, 7, 6, 3, 4, 4, 4, 3, 6, 8, 2, 2, 1, 0, 8, 7, 5, 8, 1, 8, 1, 7, 3, 5, 2, 6, 2, 9, 4, 7, 1, 2, 9, 8, 1, 0, 5, 5, 9, 9, 0, 4, 2, 3, 5, 5, 6, 5, 5, 7, 7, 7
Offset: 0

Views

Author

R. J. Mathar, Jan 09 2011

Keywords

Comments

Inverse of the constant A184083.

Examples

			(1-1/5) *(1-1/9) *(1-1/33) * (1-1/129) *(1-1/2049)* ... = 0.6837928423594743689943636...
		

Programs

  • Mathematica
    RealDigits[Times@@Table[1-1/(2^p+1),{p,Prime[Range[1000]]}],10,100][[1]] (* Harvey P. Dale, Jul 23 2024 *)

Formula

Equals product_{p in A000040} (1-1/(2^p+1)) = 1/ product_p (1+2^(-p)) = product_{n>=1} (1-1/A098640(n)).

A260674 Primes p for which the greatest common divisor of 2^p+1 and 3^p+1 is greater than 1.

Original entry on oeis.org

2, 83, 107, 367, 569, 887, 1327, 1451, 1621, 1987, 2027, 3307, 3547, 3631, 3691, 4421, 4547, 4967, 5669, 5843, 5927, 6011, 6911, 6991, 7207, 7949, 8167, 8431, 10771, 10889, 11287, 11621, 12007, 12227, 12487, 12763, 12983, 15391, 15767, 16127, 17107, 17183, 17231
Offset: 1

Views

Author

Alex Jordan, Nov 14 2015

Keywords

Comments

Primes p such that A066803(p)>1. - Tom Edgar, Nov 15 2015

Examples

			Since GCD(2^83 + 1, 3^83 + 1) = 499, the prime 83 is in the sequence. It is only the second such prime, so a(2) = 83.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 2000, GCD[2^# + 1, 3^# + 1] > 1 &] (* Michael De Vlieger, Nov 16 2015 *)
  • PARI
    list(lim)=forprime(p=2,lim,if(gcd(2^p+1,3^p+1)>1,print1(p, ", "))) \\ Anders Hellström, Nov 14 2015
    
  • Python
    from sympy import prime
    from math import gcd
    A260674_list = [p for p in (prime(n) for n in range(1,10**3)) if gcd(2**p+1,3**p+1) > 1] # Chai Wah Wu, Nov 23 2015
  • Sage
    # code will list all such primes no larger than the N-th prime.
    N=1000
    for k in range(N):
        if (gcd(2^Primes().unrank(k)+1,3^Primes().unrank(k)+1) != 1):
            print(Primes().unrank(k))
    

A260507 Primes p such that (2^p+1)^(p-1) == 1 (mod p^2).

Original entry on oeis.org

2, 7, 179, 619, 17807
Offset: 1

Views

Author

Felix Fröhlich, Jul 27 2015

Keywords

Comments

A000040(n) such that A260531(n) = 1.
Is this a subsequence of A130060?
a(6) > 10325801 if it exists.
a(6) > 3037000499 if it exists. - Hiroaki Yamanouchi, Aug 20 2015

Examples

			2^7 + 1 = 129 and 129^6 == 1 (mod 7^2), so 7 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 120, Mod[(2^# + 1)^(# - 1), #^2] == 1 &] (* Michael De Vlieger, Jul 29 2015 *)
  • PARI
    forprime(p=2, , if(Mod(2^p+1, p^2)^(p-1)==1, print1(p, ", ")))

A260531 a(n) = (2^p+1)^(p-1) modulo p^2, where p is prime(n).

Original entry on oeis.org

1, 0, 21, 1, 45, 79, 120, 305, 484, 697, 404, 186, 1354, 603, 612, 2757, 945, 3051, 3552, 498, 950, 1186, 2657, 1781, 6403, 9192, 8035, 1927, 2181, 2713, 6097, 2621, 10139, 3476, 10878, 8608, 22609, 21028, 24550, 19031, 1, 12852, 33426, 27793, 34279, 11543
Offset: 1

Views

Author

Felix Fröhlich, Jul 28 2015

Keywords

Comments

The primes where a(n) == 1 are given by A260507.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@ n}, PowerMod[2^p + 1, p - 1, p^2]]; Array[f, 46] (* Robert G. Wilson v, Jul 29 2015 *)
  • PARI
    a(n) = lift(Mod(2^prime(n)+1, prime(n)^2)^(prime(n)-1))

Formula

a(n) = A098640(n)^(A000040(n)-1) modulo A000040(n)^2.

A174623 (2^p+1)^2 where p is prime.

Original entry on oeis.org

25, 81, 1089, 16641, 4198401, 67125249, 17180131329, 274878955521, 70368760954881, 288230377225453569, 4611686022722355201, 18889465931753458761729, 4835703278462914745335809, 77371252455353859367239681, 19807040628566365873362698241
Offset: 1

Views

Author

Vincenzo Librandi, Apr 11 2010

Keywords

Examples

			For p=2, (2^2+1)^2=25;
for p=3, (2^3+1)^2=81;
for p=5, (2^5+1)^2=1089.
		

Programs

Formula

a(n) = (A098640(n))^2. - R. J. Mathar, Jul 06 2010

Extensions

Definition clarified by Jon E. Schoenfield, Jun 18 2010

A247939 Sum of divisors of 2^prime(n)+1.

Original entry on oeis.org

6, 13, 48, 176, 2736, 10928, 174768, 699056, 11184816, 727960800, 2863311536, 183355069408, 2967356682528, 11728124029616, 188313058624992, 12121838249371488, 768906329487027264, 3074457345618258608, 196765296972010592800, 3148244377723715041632
Offset: 1

Views

Author

Vincenzo Librandi, Sep 27 2014

Keywords

Comments

b-file computed with factorizations in Wagstaff link. a(166) corresponding to 2^983+1 is currently the first unknown term. - Jens Kruse Andersen, Sep 28 2014

Crossrefs

Programs

  • Magma
    [SumOfDivisors(2^p+1): p in PrimesUpTo(100)];
    
  • Maple
    with(numtheory): A247939:=n->sigma(2^ithprime(n)+1): seq(A247939(n), n=1..20); # Wesley Ivan Hurt, Sep 27 2014
  • Mathematica
    Table[DivisorSigma[1, 2^Prime[n] + 1], {n, 1, 20}]
  • PARI
    vector(50,n,sigma(2^prime(n)+1)) \\ Derek Orr, Sep 27 2014

Formula

a(n) = A000203(A098640(n)). - Michel Marcus, Sep 27 2014

A098773 p*2^p + 1 where p is prime.

Original entry on oeis.org

9, 25, 161, 897, 22529, 106497, 2228225, 9961473, 192937985, 15569256449, 66571993089, 5085241278465, 90159953477633, 378231999954945, 6614661952700417, 477381560501272577, 34011184385901985793
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 30 2004

Keywords

Examples

			If p=3, then 3*2^3 + 1 = 25.
		

Crossrefs

Cf. A098640.

Programs

  • Mathematica
    Table[p = Prime[n]; p*2^p + 1, {n, 17}] (* Robert G. Wilson v, Nov 04 2004 *)

Extensions

More terms from Robert G. Wilson v, Nov 04 2004
Showing 1-10 of 10 results.