cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A080877 a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=1, a(2)=2.

Original entry on oeis.org

1, 1, 2, 3, 8, 14, 40, 72, 208, 376, 1088, 1968, 5696, 10304, 29824, 53952, 156160, 282496, 817664, 1479168, 4281344, 7745024, 22417408, 40553472, 117379072, 212340736, 614604800, 1111830528, 3218112512, 5821620224, 16850255872
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Crossrefs

Cf. A154626, A098648 (bisections). [From R. J. Mathar, Oct 26 2009]

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-4},{1,1,2,3},50] (* or *) CoefficientList[ Series[ (-3x^3-4x^2+x+1)/(4x^4-6x^2+1),{x,0,50}],x] (* Harvey P. Dale, May 02 2011 *)

Formula

G.f.: (-3*x^3 - 4*x^2 + x + 1)/(4*x^4 - 6*x^2 + 1)
a(n + 4) = 6*a(n + 2) - 4*a(n) [From Richard Choulet, Dec 06 2008]
a(n) = ( - 1/20*5^(1/2) + 1/16*5^(1/2)*2^(1/2) - 1/16*2^(1/2) + 1/4)*(sqrt(3 + sqrt(5)))^n + (1/20*5^(1/2) + 1/16*5^(1/2)*2^(1/2) + 1/16*2^(1/2) + 1/4)*(sqrt(3 - sqrt(5)))^n + ( - 1/20*5^(1/2) - 1/16*5^(1/2)*2^(1/2) + 1/16*2^(1/2) + 1/4)*( - (sqrt(3 + sqrt(5))))^n + (1/20*5^(1/2) - 1/16*5^(1/2)*2^(1/2) - 1/16*2^(1/2) + 1/4)*( - (sqrt(3 - sqrt(5))))^n [From Richard Choulet, Dec 07 2008]

A080878 a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=1, a(2)=3.

Original entry on oeis.org

1, 1, 3, 4, 14, 20, 72, 104, 376, 544, 1968, 2848, 10304, 14912, 53952, 78080, 282496, 408832, 1479168, 2140672, 7745024, 11208704, 40553472, 58689536, 212340736, 307302400, 1111830528, 1609056256, 5821620224, 8425127936, 30482399232
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 14*x^4 + 20*x^5 + 72*x^6 + 104*x^7 + 376*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 2^n, 1] SeriesCoefficient[ (1 + x - 3*x^2 - 2*x^3)/(1 - 6*x^2 + 4*x^4), {x, 0, Abs@n}]; (* Michael Somos, May 25 2014 *)
    a[ n_] := 2^Quotient[ n - 1, 2] If[ OddQ@n, Fibonacci@n, LucasL@n]; (* Michael Somos, May 25 2014 *)
    LinearRecurrence[{0,6,0,-4},{1,1,3,4},40] (* Harvey P. Dale, Dec 07 2014 *)
  • PARI
    {a(n) = if( n<0, 2^n, 1) * polcoeff( (1 + x - 3*x^2 - 2*x^3) / (1 - 6*x^2 + 4*x^4) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, May 25 2014 */
    
  • PARI
    {a(n) = 2^((n - 1)\2) * if( n%2, fibonacci(n), fibonacci(n-1) + fibonacci(n+1))}; /* Michael Somos, May 25 2014 */

Formula

G.f.: (1 + x - 3*x^2 - 2*x^3) / (1 - 6*x^2 + 4*x^4). a(n) = 6*a(n-2) - 4*a(n-4). - Michael Somos, Mar 05 2003
a(2n) = A080877(2n+1), a(2n+1) = A080877(2n+2)/2.
a(n) = (1/20*10^(1/2) + 1/4)*(sqrt(3 + sqrt(5)))^n + (1/20*10^(1/2) + 1/4)*(sqrt(3 - sqrt(5)))^n + ( - 1/20*10^(1/2) + 1/4)*( - (sqrt(3 + sqrt(5))))^n + ( - 1/20*10^(1/2) + 1/4)*( - (sqrt(3 - sqrt(5))))^n. - Richard Choulet, Dec 07 2008
a(-n) = a(n) / 2^n. a(2*n) = A098648(n). a(2*n + 1) = A082761(n). - Michael Somos, May 25 2014
0 = a(n)*(+2*a(n+2)) + a(n+1)*(+2*a(n+1) - 7*a(n+2) + a(n+3)) + a(n+2)*(+a(n+2)) for all n in Z. - Michael Somos, May 25 2014

A108404 Expansion of (1-4x)/(1-8x+11x^2).

Original entry on oeis.org

1, 4, 21, 124, 761, 4724, 29421, 183404, 1143601, 7131364, 44471301, 277325404, 1729418921, 10784771924, 67254567261, 419404046924, 2615432135521, 16310012568004, 101710347053301, 634272638178364, 3955367287840601
Offset: 0

Views

Author

Philippe Deléham, Jul 04 2005

Keywords

Comments

Binomial transform of A098648. Second binomial transform of A001077. Third binomial transform of A084057. 4th binomial transform of (1, 0, 5, 0, 25, 0, 125, 0, 625, 0, 3125, ...).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4x)/(1-8x+11x^2),{x,0,30}],x] (* or *) LinearRecurrence[{8,-11},{1,4},30] (* Harvey P. Dale, Jan 03 2012 *)

Formula

E.g.f.: exp(4x)cosh(sqrt(5)x).
a(n) = 8a(n-1) - 11a(n-2), a(0) = 1, a(1) = 4.
a(n) = ((4+sqrt(5))^n + (4-sqrt(5))^n)/2.
a(n+1)/a(n) converges to 4 + sqrt(5) = 6.2360679774997896964... = 4+A002163.
a(n) = A091870(n+1)-4*A091870(n). - R. J. Mathar, Nov 10 2013

A163063 Lucas(3n+2) = Fibonacci(3n+1) + Fibonacci(3n+3).

Original entry on oeis.org

3, 11, 47, 199, 843, 3571, 15127, 64079, 271443, 1149851, 4870847, 20633239, 87403803, 370248451, 1568397607, 6643838879, 28143753123, 119218851371, 505019158607, 2139295485799, 9062201101803, 38388099893011
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009

Keywords

Comments

Binomial transform of A163062. Second binomial transform of A163114. Inverse binomial transform of A098648 without initial 1.

Crossrefs

Cf. A000032, A000045, A163062, A163114, A098648, A001077 (L(3*n)/L(2)), A048876 (L(3*n+1)).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((3+r)*(2+r)^n+(3-r)*(2-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
    
  • Magma
    [Lucas(3*n+2): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    with(combinat):A163063:=proc(n)return fibonacci(3*n+1) + fibonacci(3*n+3): end:seq(A163063(n), n=0..21); # Nathaniel Johnston, Apr 18 2011
  • Mathematica
    Table[Fibonacci[3n + 1] + Fibonacci[3n + 3], {n, 0, 21}] (* Alonso del Arte, Nov 29 2010 *)
    LinearRecurrence[{4,1},{3,11},30] (* Harvey P. Dale, Apr 14 2021 *)
  • PARI
    Vec((3-x)/(1-4*x-x^2) + O(x^100)) \\ Altug Alkan, Dec 10 2015

Formula

a(n) = 4*a(n-1)+a(n-2) for n > 1; a(0) = 3, a(1) = 11.
G.f.: (3-x)/(1-4*x-x^2).
a(n) = A033887(n) + A014445(n+1).
a(n) = ((3+sqrt(5))*(2+sqrt(5))^n+(3-sqrt(5))*(2-sqrt(5))^n)/2.
a(n) = A000032(3*n+2), n>=0, (Lucas trisection). - Wolfdieter Lang, Mar 09 2011.
a(n) = 5*F(n)*F(n+1)*L(n+1) + L(n+2)*(-1)^n with F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, Dec 10 2015

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 21 2009

A163114 a(n) = 5*a(n-2) for n > 2; a(1) = 3, a(2) = 5.

Original entry on oeis.org

3, 5, 15, 25, 75, 125, 375, 625, 1875, 3125, 9375, 15625, 46875, 78125, 234375, 390625, 1171875, 1953125, 5859375, 9765625, 29296875, 48828125, 146484375, 244140625, 732421875, 1220703125, 3662109375, 6103515625, 18310546875
Offset: 1

Views

Author

Klaus Brockhaus, Jul 21 2009

Keywords

Comments

Binomial transform is A163062, second binomial transform is A163063, third binomial transform is A098648 without initial 1, fourth binomial transform is A163064, fifth binomial transform is A163065.

Crossrefs

Programs

  • Magma
    [ n le 2 select 2*n+1 else 5*Self(n-2): n in [1..29] ];
    
  • Mathematica
    CoefficientList[Series[x*(3 + 5*x)/(1 - 5*x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
    LinearRecurrence[{0,5},{3,5},30] (* Harvey P. Dale, Aug 01 2021 *)
  • PARI
    x='x+O('x^30); Vec(x*(3+5*x)/(1-5*x^2)) \\ G. C. Greubel, Dec 21 2017

Formula

a(n) = (2-(-1)^n)*5^(1/4*(2*n-1+(-1)^n)).
G.f.: x*(3+5*x)/(1-5*x^2).
a(n) = A056487(n), n>=1.
E.g.f.: cosh(sqrt(5)*x) + 3*sinh(sqrt(5)*x)/sqrt(5) - 1. - Stefano Spezia, Nov 19 2023

A098647 Trace sequence associated to the 4 X 4 Krawtchouk matrix and its transpose.

Original entry on oeis.org

1, 12, 224, 4608, 96256, 2015232, 42205184, 883949568, 18513657856, 387755016192, 8121246285824, 170093589823488, 3562486393470976, 74613683694600192, 1562729279488262144, 32730226951263879168
Offset: 0

Views

Author

Paul Barry, Sep 18 2004

Keywords

Comments

Let A=[1,1,1,1;3,1,-1,-3;3,-1,-1,3;1,-1,1,-1], the 4 X 4 Krawtchouk matrix. Then a(n)=trace((A*A')^n)/4.
Twelfth binomial transform of ((4*sqrt(5))^n +(-4*sqrt(5))^n)/2, with g.f. 1/(1-80*x^2).

Crossrefs

Cf. A098646.

Formula

G.f.: (1-12*x)/(1-24*x+64*x^2).
a(n) = ((12+4*sqrt(5))^n+(12-4*sqrt(5))^n)/2.
a(n) = 2^(n-1)*((sqrt(5)-1)^(2*n)+(sqrt(5)+1)^(2*n)).
a(n) = 4^n*A098648(n). - R. J. Mathar, Nov 11 2013

A163064 a(n) = ((3+sqrt(5))*(4+sqrt(5))^n + (3-sqrt(5))*(4-sqrt(5))^n)/2.

Original entry on oeis.org

3, 17, 103, 637, 3963, 24697, 153983, 960197, 5987763, 37339937, 232854103, 1452093517, 9055353003, 56469795337, 352149479663, 2196028088597, 13694580432483, 85400334485297, 532562291125063, 3321094649662237
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009

Keywords

Comments

Binomial transform of A098648 without initial 1. Fourth binomial transform of A163114. Inverse binomial transform of A163065.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((3+r)*(4+r)^n+(3-r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
    
  • Magma
    I:=[3,17]; [n le 2 select I[n] else 8*Self(n-1) - 11*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 22 2017
    
  • Mathematica
    CoefficientList[Series[(3-7*x)/(1-8*x+11*x^2), {x,0,50}], x] (* or *) LinearRecurrence[{8,-11}, {3,17}, 30] (* G. C. Greubel, Dec 22 2017 *)
  • PARI
    x='x+O('x^30); Vec((3-7*x)/(1-8*x+11*x^2)) \\ G. C. Greubel, Dec 22 2017

Formula

a(n) = 8*a(n-1) - 11*a(n-2) for n > 1; a(0) = 3, a(1) = 17.
G.f.: (3-7*x)/(1-8*x+11*x^2).

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 21 2009

A191348 Array read by antidiagonals: ((ceiling(sqrt(n)) + sqrt(n))^k + (ceiling(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 2, 1, 0, 8, 20, 7, 2, 1, 0, 16, 68, 26, 8, 3, 1, 0, 32, 232, 97, 32, 14, 3, 1, 0, 64, 792, 362, 128, 72, 15, 3, 1, 0, 128, 2704, 1351, 512, 376, 81, 16, 3, 1, 0
Offset: 0

Views

Author

Charles L. Hohn, May 31 2011

Keywords

Examples

			1, 0,  0,   0,    0,     0,      0,      0,       0,        0,         0, ...
1, 1,  2,   4,    8,    16,     32,     64,     128,      256,       512, ...
1, 2,  6,  20,   68,   232,    792,   2704,    9232,    31520,    107616, ...
1, 2,  7,  26,   97,   362,   1351,   5042,   18817,    70226,    262087, ...
1, 2,  8,  32,  128,   512,   2048,   8192,   32768,   131072,    524288, ...
1, 3, 14,  72,  376,  1968,  10304,  53952,  282496,  1479168,   7745024, ...
1, 3, 15,  81,  441,  2403,  13095,  71361,  388881,  2119203,  11548575, ...
1, 3, 16,  90,  508,  2868,  16192,  91416,  516112,  2913840,  16450816, ...
1, 3, 17,  99,  577,  3363,  19601, 114243,  665857,  3880899,  22619537, ...
1, 3, 18, 108,  648,  3888,  23328, 139968,  839808,  5038848,  30233088, ...
1, 4, 26, 184, 1316,  9424,  67496, 483424, 3462416, 24798784, 177615776, ...
1, 4, 27, 196, 1433, 10484,  76707, 561236, 4106353, 30044644, 219825387, ...
1, 4, 28, 208, 1552, 11584,  86464, 645376, 4817152, 35955712, 268377088, ...
1, 4, 29, 220, 1673, 12724,  96773, 736012, 5597777, 42574180, 323800109, ...
1, 4, 30, 232, 1796, 13904, 107640, 833312, 6451216, 49943104, 386642400, ...
...
		

Crossrefs

Row 1 is A000007, row 2 is A011782, row 3 is A006012, row 4 is A001075, row 5 is A081294, row 6 is A098648, row 7 is A084120, row 8 is A146963, row 9 is A001541, row 10 is A081341, row 11 is A084134, row 13 is A090965.
Row 3*2 is A056236, row 4*2 is A003500, row 5*2 is A155543, row 9*2 is A003499.
Cf. A191347 which uses floor() in place of ceiling().

Programs

  • PARI
    T(n, k) = if (k==0, 1, if (k==1, ceil(sqrt(n)), T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2));
    matrix(9, 9, n, k, T(n-1, k-1)) \\ Charles L. Hohn, Aug 23 2019

Formula

For each row n >= 0 let T(n,0)=1 and T(n,1) = ceiling(sqrt(n)), then for each column k >= 2: T(n,k) = T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - Charles L. Hohn, Aug 23 2019

A228842 Binomial transform of A014448.

Original entry on oeis.org

2, 6, 28, 144, 752, 3936, 20608, 107904, 564992, 2958336, 15490048, 81106944, 424681472, 2223661056, 11643240448, 60964798464, 319215828992, 1671435780096, 8751751364608, 45824765067264, 239941584945152, 1256350449401856, 6578336356630528, 34444616342175744
Offset: 0

Views

Author

R. J. Mathar, Nov 10 2013

Keywords

Comments

The binomial transform of this sequence is 2, 8, 42, 248,... = 2*A108404(n).

References

  • C. Smith, A Treatise on Algebra, Macmillan, London, 5th ed., 1950, p. 360, Example 44.

Crossrefs

When divided by 2^n this becomes(essentially) A005248.

Programs

  • Mathematica
    CoefficientList[Series[2*(1 - 3 x)/(1 - 6 x + 4 x^2), {x, 0, 23}], x] (* Michael De Vlieger, Aug 26 2021 *)
    LinearRecurrence[{6,-4},{2,6},30] (* Harvey P. Dale, Jun 30 2024 *)
  • PARI
    Vec(2*(1 - 3*x) / (1 - 6*x + 4*x^2) + O(x^30)) \\ Colin Barker, Sep 21 2017

Formula

G.f.: 2*( 1-3*x ) / ( 1-6*x+4*x^2 ).
a(n) = 2*A098648(n).
From Colin Barker, Sep 21 2017: (Start)
a(n) = (3-sqrt(5))^n + (3+sqrt(5))^n.
a(n) = 6*a(n-1) - 4*a(n-2) for n>1.
(End)
Showing 1-9 of 9 results.