A080877 a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=1, a(2)=2.
1, 1, 2, 3, 8, 14, 40, 72, 208, 376, 1088, 1968, 5696, 10304, 29824, 53952, 156160, 282496, 817664, 1479168, 4281344, 7745024, 22417408, 40553472, 117379072, 212340736, 614604800, 1111830528, 3218112512, 5821620224, 16850255872
Offset: 0
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 6, 0, -4).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,6,0,-4},{1,1,2,3},50] (* or *) CoefficientList[ Series[ (-3x^3-4x^2+x+1)/(4x^4-6x^2+1),{x,0,50}],x] (* Harvey P. Dale, May 02 2011 *)
Formula
G.f.: (-3*x^3 - 4*x^2 + x + 1)/(4*x^4 - 6*x^2 + 1)
a(n + 4) = 6*a(n + 2) - 4*a(n) [From Richard Choulet, Dec 06 2008]
a(n) = ( - 1/20*5^(1/2) + 1/16*5^(1/2)*2^(1/2) - 1/16*2^(1/2) + 1/4)*(sqrt(3 + sqrt(5)))^n + (1/20*5^(1/2) + 1/16*5^(1/2)*2^(1/2) + 1/16*2^(1/2) + 1/4)*(sqrt(3 - sqrt(5)))^n + ( - 1/20*5^(1/2) - 1/16*5^(1/2)*2^(1/2) + 1/16*2^(1/2) + 1/4)*( - (sqrt(3 + sqrt(5))))^n + (1/20*5^(1/2) - 1/16*5^(1/2)*2^(1/2) - 1/16*2^(1/2) + 1/4)*( - (sqrt(3 - sqrt(5))))^n [From Richard Choulet, Dec 07 2008]
Comments