cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A328239 Numbers whose third arithmetic derivative (A099306) is prime.

Original entry on oeis.org

14, 18, 38, 46, 138, 150, 166, 186, 258, 266, 322, 338, 342, 350, 398, 402, 502, 526, 530, 546, 550, 610, 626, 658, 662, 686, 717, 722, 725, 726, 734, 750, 758, 774, 826, 890, 931, 966, 970, 1002, 1034, 1074, 1110, 1126, 1166, 1175, 1178, 1190, 1258, 1262, 1294, 1302, 1338, 1366
Offset: 1

Views

Author

Antti Karttunen, Oct 10 2019

Keywords

Comments

No multiples of 4 because subsequence of A048103.

Examples

			A003415(A003415(A003415(14))) = 5, which is a prime, thus 14 is included in this sequence.
		

Crossrefs

Subsequence of A048103 and of A099308.

Programs

  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := dn[n] = Module[{f = Transpose[ FactorInteger@n]}, If[ PrimeQ@n, 1, Total[n*f[[2]]/f[[1]]]]]; Select[Range@1390, PrimeQ@ dn@ dn@ dn@# &] (* Robert G. Wilson v, Oct 22 2019 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA328239(n) = isprime(A003415(A003415(A003415(n))));

A328246 Numbers whose third arithmetic derivative (A099306) is a squarefree number (A005117).

Original entry on oeis.org

9, 14, 18, 21, 25, 33, 38, 46, 49, 57, 65, 77, 85, 93, 98, 121, 126, 129, 134, 138, 141, 145, 150, 161, 166, 177, 185, 186, 194, 201, 205, 206, 209, 217, 221, 237, 242, 249, 253, 258, 262, 265, 266, 289, 290, 301, 305, 306, 315, 322, 326, 333, 334, 338, 341, 342, 350, 361, 365, 369, 375, 377, 381, 393, 398, 402, 413, 414
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2019

Keywords

Comments

Numbers n for which A008966(A003415(A003415(A003415(n)))) = 1.

Examples

			For n=9, its first arithmetic derivative is A003415(9) = 6, its second derivative is A003415(6) = 5, and its third derivative is A003415(5) = 1, and 1 is a squarefree number (in A005117), thus 9 is included in this sequence.
For n=14, A003415(14) = 9, A003415(9) = 6, A003415(6) = 5, and 5, like all primes, is a squarefree number, thus 14 is included in this sequence.
For n=49, A003415(49) = 14, A003415(14) = 9, A003415(9) = 6 = 2*3, and 6 is a squarefree number, thus 49 is included in this sequence.
		

Crossrefs

Programs

A328247 Numbers whose third arithmetic derivative (A099306) is a squarefree number (A005117), but the second derivative (A068346) is not.

Original entry on oeis.org

33, 49, 98, 129, 141, 194, 205, 249, 301, 306, 445, 481, 493, 529, 549, 553, 589, 615, 681, 741, 746, 913, 917, 946, 949, 962, 973, 993, 1010, 1106, 1273, 1386, 1397, 1417, 1430, 1518, 1561, 1611, 1633, 1761, 1802, 1842, 1849, 1858, 1870, 1946, 1957, 1977, 2030, 2049, 2078, 2105, 2139, 2166, 2170, 2173, 2175, 2209, 2223, 2330
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2019

Keywords

Examples

			For n=33, its first arithmetic derivative is A003415(33) = 14, its second derivative is A003415(14) = 9 = 3^2 (which is not squarefree) and its third derivative is A003415(9) = 6 = 2*3, which is, thus 33 is included in this sequence.
		

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA328247(n) = { my(u=A003415(A003415(n))); (!issquarefree(u) && issquarefree(A003415(u))); };

A003415 a(n) = n' = arithmetic derivative of n: a(0) = a(1) = 0, a(prime) = 1, a(m*n) = m*a(n) + n*a(m).

Original entry on oeis.org

0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 10, 13, 1, 44, 10, 15, 27, 32, 1, 31, 1, 80, 14, 19, 12, 60, 1, 21, 16, 68, 1, 41, 1, 48, 39, 25, 1, 112, 14, 45, 20, 56, 1, 81, 16, 92, 22, 31, 1, 92, 1, 33, 51, 192, 18, 61, 1, 72, 26, 59, 1, 156, 1, 39, 55, 80, 18, 71
Offset: 0

Views

Author

Keywords

Comments

Can be extended to negative numbers by defining a(-n) = -a(n).
Based on the product rule for differentiation of functions: for functions f(x) and g(x), (fg)' = f'g + fg'. So with numbers, (ab)' = a'b + ab'. This implies 1' = 0. - Kerry Mitchell, Mar 18 2004
The derivative of a number x with respect to a prime number p as being the number "dx/dp" = (x-x^p)/p, which is an integer due to Fermat's little theorem. - Alexandru Buium, Mar 18 2004
The relation (ab)' = a'b + ab' implies 1' = 0, but it does not imply p' = 1 for p a prime. In fact, any function f defined on the primes can be extended uniquely to a function on the integers satisfying this relation: f(Product_i p_i^e_i) = (Product_i p_i^e_i) * (Sum_i e_i*f(p_i)/p_i). - Franklin T. Adams-Watters, Nov 07 2006
See A131116 and A131117 for record values and where they occur. - Reinhard Zumkeller, Jun 17 2007
Let n be the product of a multiset P of k primes. Consider the k-dimensional box whose edges are the elements of P. Then the (k-1)-dimensional surface of this box is 2*a(n). For example, 2*a(25) = 20, the perimeter of a 5 X 5 square. Similarly, 2*a(18) = 42, the surface area of a 2 X 3 X 3 box. - David W. Wilson, Mar 11 2011
The arithmetic derivative n' was introduced, probably for the first time, by the Spanish mathematician José Mingot Shelly in June 1911 with "Una cuestión de la teoría de los números", work presented at the "Tercer Congreso Nacional para el Progreso de las Ciencias, Granada", cf. link to the abstract on Zentralblatt MATH, and L. E. Dickson, History of the Theory of Numbers. - Giorgio Balzarotti, Oct 19 2013
a(A235991(n)) odd; a(A235992(n)) even. - Reinhard Zumkeller, Mar 11 2014
Sequence A157037 lists numbers with prime arithmetic derivative, i.e., indices of primes in this sequence. - M. F. Hasler, Apr 07 2015
Maybe the simplest "natural extension" of the arithmetic derivative, in the spirit of the above remark by Franklin T. Adams-Watters (2006), is the "pi based" version where f(p) = primepi(p), see sequence A258851. When f is chosen to be the identity map (on primes), one gets A066959. - M. F. Hasler, Jul 13 2015
When n is composite, it appears that a(n) has lower bound 2*sqrt(n), with equality when n is the square of a prime, and a(n) has upper bound (n/2)*log_2(n), with equality when n is a power of 2. - Daniel Forgues, Jun 22 2016
If n = p1*p2*p3*... where p1, p2, p3, ... are all the prime factors of n (not necessarily distinct), and h is a real number (we assume h nonnegative and < 1), the arithmetic derivative of n is equivalent to n' = lim_{h->0} ((p1+h)*(p2+h)*(p3+h)*... - (p1*p2*p3*...))/h. It also follows that the arithmetic derivative of a prime is 1. We could assume h = 1/N, where N is an integer; then the limit becomes {N -> oo}. Note that n = 1 is not a prime and plays the role of constant. - Giorgio Balzarotti, May 01 2023

Examples

			6' = (2*3)' = 2'*3 + 2*3' = 1*3 + 2*1 = 5.
Note that, for example, 2' + 3' = 1 + 1 = 2, (2+3)' = 5' = 1. So ' is not linear.
G.f. = x^2 + x^3 + 4*x^4 + x^5 + 5*x^6 + x^7 + 12*x^8 + 6*x^9 + 7*x^10 + ...
		

References

  • G. Balzarotti, P. P. Lava, La derivata aritmetica, Editore U. Hoepli, Milano, 2013.
  • E. J. Barbeau, Problem, Canad. Math. Congress Notes, 5 (No. 8, April 1973), 6-7.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chapter XIX, p. 451, Dover Edition, 2005. (Work originally published in 1919.)
  • A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, p. 295.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A086134 (least prime factor of n').
Cf. A086131 (greatest prime factor of n').
Cf. A068719 (derivative of 2n).
Cf. A068720 (derivative of n^2).
Cf. A068721 (derivative of n^3).
Cf. A001787 (derivative of 2^n).
Cf. A027471 (derivative of 3^(n-1)).
Cf. A085708 (derivative of 10^n).
Cf. A068327 (derivative of n^n).
Cf. A024451 (derivative of p#).
Cf. A068237 (numerator of derivative of 1/n).
Cf. A068238 (denominator of derivative of 1/n).
Cf. A068328 (derivative of squarefree numbers).
Cf. A068311 (derivative of n!).
Cf. A168386 (derivative of n!!).
Cf. A260619 (derivative of hyperfactorial(n)).
Cf. A260620 (derivative of superfactorial(n)).
Cf. A068312 (derivative of triangular numbers).
Cf. A068329 (derivative of Fibonacci(n)).
Cf. A096371 (derivative of partition number).
Cf. A099301 (derivative of d(n)).
Cf. A099310 (derivative of phi(n)).
Cf. A342925 (derivative of sigma(n)).
Cf. A349905 (derivative of prime shift).
Cf. A327860 (derivative of primorial base exp-function).
Cf. A369252 (derivative of products of three odd primes), A369251 (same sorted).
Cf. A068346 (second derivative of n).
Cf. A099306 (third derivative of n).
Cf. A258644 (fourth derivative of n).
Cf. A258645 (fifth derivative of n).
Cf. A258646 (sixth derivative of n).
Cf. A258647 (seventh derivative of n).
Cf. A258648 (eighth derivative of n).
Cf. A258649 (ninth derivative of n).
Cf. A258650 (tenth derivative of n).
Cf. A185232 (n-th derivative of n).
Cf. A258651 (A(n,k) = k-th arithmetic derivative of n).
Cf. A085731 (gcd(n,n')), A083345 (n'/gcd(n,n')), A057521 (gcd(n, (n')^k) for k>1).
Cf. A342014 (n' mod n), A369049 (n mod n').
Cf. A341998 (A003557(n')), A342001 (n'/A003557(n)).
Cf. A098699 (least x such that x' = n, antiderivative of n).
Cf. A098700 (n such that x' = n has no integer solution).
Cf. A099302 (number of solutions to x' = n).
Cf. A099303 (greatest x such that x' = n).
Cf. A051674 (n such that n' = n).
Cf. A083347 (n such that n' < n).
Cf. A083348 (n such that n' > n).
Cf. A099304 (least k such that (n+k)' = n' + k').
Cf. A099305 (number of solutions to (n+k)' = n' + k').
Cf. A328235 (least k > 0 such that (n+k)' = u * n' for some natural number u).
Cf. A328236 (least m > 1 such that (m*n)' = u * n' for some natural number u).
Cf. A099307 (least k such that the k-th arithmetic derivative of n is zero).
Cf. A099308 (k-th arithmetic derivative of n is zero for some k).
Cf. A099309 (k-th arithmetic derivative of n is nonzero for all k).
Cf. A129150 (n-th derivative of 2^3).
Cf. A129151 (n-th derivative of 3^4).
Cf. A129152 (n-th derivative of 5^6).
Cf. A189481 (x' = n has a unique solution).
Cf. A190121 (partial sums).
Cf. A258057 (first differences).
Cf. A229501 (n divides the n-th partial sum).
Cf. A165560 (parity).
Cf. A235991 (n' is odd), A235992 (n' is even).
Cf. A327863, A327864, A327865 (n' is a multiple of 3, 4, 5).
Cf. A157037 (n' is prime), A192192 (n'' is prime), A328239 (n''' is prime).
Cf. A328393 (n' is squarefree), A328234 (squarefree and > 1).
Cf. A328244 (n'' is squarefree), A328246 (n''' is squarefree).
Cf. A328303 (n' is not squarefree), A328252 (n' is squarefree, but n is not).
Cf. A328248 (least k such that the (k-1)-th derivative of n is squarefree).
Cf. A328251 (k-th arithmetic derivative is never squarefree for any k >= 0).
Cf. A256750 (least k such that the k-th derivative is either 0 or has a factor p^p).
Cf. A327928 (number of distinct primes p such that p^p divides n').
Cf. A342003 (max. exponent k for any prime power p^k that divides n').
Cf. A327929 (n' has at least one divisor of the form p^p).
Cf. A327978 (n' is primorial number > 1).
Cf. A328243 (n' is a partial sum of primorial numbers and larger than one).
Cf. A328310 (maximal prime exponent of n' minus maximal prime exponent of n).
Cf. A328320 (max. prime exponent of n' is less than that of n).
Cf. A328321 (max. prime exponent of n' is >= that of n).
Cf. A328383 (least k such that the k-th derivative of n is either a multiple or a divisor of n, but not both).
Cf. A263111 (the ordinal transform of a).
Cf. A300251, A319684 (Möbius and inverse Möbius transform).
Cf. A305809 (Dirichlet convolution square).
Cf. A349133, A349173, A349394, A349380, A349618, A349619, A349620, A349621 (for miscellaneous Dirichlet convolutions).
Cf. A069359 (similar formula which agrees on squarefree numbers).
Cf. A258851 (the pi-based arithmetic derivative of n).
Cf. A328768, A328769 (primorial-based arithmetic derivatives of n).
Cf. A328845, A328846 (Fibonacci-based arithmetic derivatives of n).
Cf. A302055, A327963, A327965, A328099 (for other variants and modifications).
Cf. A038554 (another sequence using "derivative" in its name, but involving binary expansion of n).
Cf. A322582, A348507 (lower and upper bounds), also A002620.

Programs

  • GAP
    A003415:= Concatenation([0,0],List(List([2..10^3],Factors),
    i->Product(i)*Sum(i,j->1/j))); # Muniru A Asiru, Aug 31 2017
    (APL, Dyalog dialect) A003415 ← { ⍺←(0 1 2) ⋄ ⍵≤1:⊃⍺ ⋄ 0=(3⊃⍺)|⍵:((⊃⍺+(2⊃⍺)×(⍵÷3⊃⍺)) ((2⊃⍺)×(3⊃⍺)) (3⊃⍺)) ∇ ⍵÷3⊃⍺ ⋄ ((⊃⍺) (2⊃⍺) (1+(3⊃⍺))) ∇ ⍵} ⍝ Antti Karttunen, Feb 18 2024
  • Haskell
    a003415 0 = 0
    a003415 n = ad n a000040_list where
      ad 1 _             = 0
      ad n ps'@(p:ps)
         | n < p * p     = 1
         | r > 0         = ad n ps
         | otherwise     = n' + p * ad n' ps' where
           (n',r) = divMod n p
    -- Reinhard Zumkeller, May 09 2011
    
  • Magma
    Ad:=func; [n le 1 select 0 else Ad(n): n in [0..80]]; // Bruno Berselli, Oct 22 2013
    
  • Maple
    A003415 := proc(n) local B,m,i,t1,t2,t3; B := 1000000000039; if n<=1 then RETURN(0); fi; if isprime(n) then RETURN(1); fi; t1 := ifactor(B*n); m := nops(t1); t2 := 0; for i from 1 to m do t3 := op(i,t1); if nops(t3) = 1 then t2 := t2+1/op(t3); else t2 := t2+op(2,t3)/op(op(1,t3)); fi od: t2 := t2-1/B; n*t2; end;
    A003415 := proc(n)
            local a,f;
            a := 0 ;
            for f in ifactors(n)[2] do
                    a := a+ op(2,f)/op(1,f);
            end do;
            n*a ;
    end proc: # R. J. Mathar, Apr 05 2012
  • Mathematica
    a[ n_] := If[ Abs @ n < 2, 0, n Total[ #2 / #1 & @@@ FactorInteger[ Abs @ n]]]; (* Michael Somos, Apr 12 2011 *)
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Table[dn[n], {n, 0, 100}] (* T. D. Noe, Sep 28 2012 *)
  • PARI
    A003415(n) = {local(fac);if(n<1,0,fac=factor(n);sum(i=1,matsize(fac)[1],n*fac[i,2]/fac[i,1]))} /* Michael B. Porter, Nov 25 2009 */
    
  • PARI
    apply( A003415(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]), [0..99]) \\ M. F. Hasler, Sep 25 2013, updated Nov 27 2019
    
  • PARI
    A003415(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= spf); (s); }; \\ Antti Karttunen, Mar 10 2021
    
  • PARI
    a(n) = my(f=factor(n), r=[1/(e+!e)|e<-f[,1]], c=f[,2]); n*r*c; \\ Ruud H.G. van Tol, Sep 03 2023
    
  • Python
    from sympy import factorint
    def A003415(n):
        return sum([int(n*e/p) for p,e in factorint(n).items()]) if n > 1 else 0
    # Chai Wah Wu, Aug 21 2014
    
  • Sage
    def A003415(n):
        F = [] if n == 0 else factor(n)
        return n * sum(g / f for f, g in F)
    [A003415(n) for n in range(79)] # Peter Luschny, Aug 23 2014
    

Formula

If n = Product p_i^e_i, a(n) = n * Sum (e_i/p_i).
a(m*p^p) = (m + a(m))*p^p, p prime: a(m*A051674(k))=A129283(m)*A051674(k). - Reinhard Zumkeller, Apr 07 2007
For n > 1: a(n) = a(A032742(n)) * A020639(n) + A032742(n). - Reinhard Zumkeller, May 09 2011
a(n) = n * Sum_{p|n} v_p(n)/p, where v_p(n) is the largest power of the prime p dividing n. - Wesley Ivan Hurt, Jul 12 2015
For n >= 2, Sum_{k=2..n} floor(1/a(k)) = pi(n) = A000720(n) (see K. T. Atanassov article). - Ivan N. Ianakiev, Mar 22 2019
From A.H.M. Smeets, Jan 17 2020: (Start)
Limit_{n -> oo} (1/n^2)*Sum_{i=1..n} a(i) = A136141/2.
Limit_{n -> oo} (1/n)*Sum_{i=1..n} a(i)/i = A136141.
a(n) = n if and only if n = p^p, where p is a prime number. (End)
Dirichlet g.f.: zeta(s-1)*Sum_{p prime} 1/(p^s-p), see A136141 (s=2), A369632 (s=3) [Haukkanen, Merikoski and Tossavainen]. - Sebastian Karlsson, Nov 25 2021
From Antti Karttunen, Nov 25 2021: (Start)
a(n) = Sum_{d|n} d * A349394(n/d).
For all n >= 1, A322582(n) <= a(n) <= A348507(n).
If n is not a prime, then a(n) >= 2*sqrt(n), or in other words, for all k >= 1 for which A002620(n)+k is not a prime, we have a(A002620(n)+k) > n. [See Ufnarovski and Åhlander, Theorem 9, point (3).]
(End)

Extensions

More terms from Michel ten Voorde, Apr 11 2001

A068346 a(n) = n'' = second arithmetic derivative of n.

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 1, 0, 16, 5, 1, 0, 32, 0, 6, 12, 80, 0, 10, 0, 44, 7, 1, 0, 48, 7, 8, 27, 80, 0, 1, 0, 176, 9, 1, 16, 92, 0, 10, 32, 72, 0, 1, 0, 112, 16, 10, 0, 240, 9, 39, 24, 92, 0, 108, 32, 96, 13, 1, 0, 96, 0, 14, 20, 640, 21, 1, 0, 156, 15, 1, 0, 220, 0, 16, 16, 176, 21, 1, 0, 368, 216
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2002

Keywords

Comments

a(2p) = 1 for any prime p implies p,p+2 form a twin prime pair. - Kevin J. Gomez, Aug 29 2017
Indices of records > 0 appear to all belong to A116882. - Bill McEachen, Oct 16 2023

Crossrefs

Cf. A003415 (arithmetic derivative of n), A099306 (third arithmetic derivative of n).
Column k=2 of A258651.

Programs

  • Haskell
    a068346 = a003415 . a003415  -- Reinhard Zumkeller, Nov 10 2013
  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    a:= n-> d(d(n));
    seq(a(n), n=0..100);  # Alois P. Heinz, Aug 29 2017
  • Mathematica
    dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[dn[dn[n]], {n, 100}] (T. D. Noe)
    f[n_] := If[ Abs@ n < 2, 0, n*Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Table[ f[ f[ n]], {n, 81}] (* Robert G. Wilson v, May 12 2012 *)

Formula

a(n) = A003415(A003415(n)).
a(A000040(n)) = 0; a(A157037(n)) = 1. - Reinhard Zumkeller, Feb 22 2009

Extensions

More terms from T. D. Noe, Oct 12 2004

A157037 Numbers with prime arithmetic derivative A003415.

Original entry on oeis.org

6, 10, 22, 30, 34, 42, 58, 66, 70, 78, 82, 105, 114, 118, 130, 142, 154, 165, 174, 182, 202, 214, 222, 231, 238, 246, 255, 273, 274, 282, 285, 286, 298, 310, 318, 345, 357, 358, 366, 370, 382, 385, 390, 394, 399, 418, 430, 434, 442, 454, 455, 465, 474, 478
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 22 2009

Keywords

Comments

Equivalently, solutions to n'' = 1, since n' = 1 iff n is prime. Twice the lesser of the twin primes, 2*A001359 = A108605, are a subsequence. - M. F. Hasler, Apr 07 2015
All terms are squarefree, because if there would be a prime p whose square p^2 would divide n, then A003415(n) = (A003415(p^2) * (n/p^2)) + (p^2 * A003415(n/p^2)) = p*[(2 * (n/p^2)) + (p * A003415(n/p^2))], which certainly is not a prime. - Antti Karttunen, Oct 10 2019

Examples

			A003415(42) = A003415(2*3*7) = 2*3+3*7+7*2 = 41 = A000040(13), therefore 42 is a term.
		

Crossrefs

Cf. A189441 (primes produced by these numbers), A241859.
Cf. A192192, A328239 (numbers whose 2nd and numbers whose 3rd arithmetic derivative is prime).
Cf. A108605, A256673 (subsequences).
Subsequence of following sequences: A005117, A099308, A235991, A328234 (A328393), A328244, A328321.

Programs

  • Haskell
    a157037 n = a157037_list !! (n-1)
    a157037_list = filter ((== 1) . a010051' . a003415) [1..]
    -- Reinhard Zumkeller, Apr 08 2015
    
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Select[Range[500], dn[dn[#]] == 1 &] (* T. D. Noe, Mar 07 2013 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA157037(n) = isprime(A003415(n)); \\ Antti Karttunen, Oct 19 2019
    
  • Python
    from itertools import count, islice
    from sympy import isprime, factorint
    def A157037_gen(): # generator of terms
        return filter(lambda n:isprime(sum(n*e//p for p,e in factorint(n).items())), count(2))
    A157037_list = list(islice(A157037_gen(),20)) # Chai Wah Wu, Jun 23 2022

Formula

A010051(A003415(a(n))) = 1; A068346(a(n)) = 1; A099306(a(n)) = 0.
A003415(a(n)) = A328385(a(n)) = A241859(n); A327969(a(n)) = 3. - Antti Karttunen, Oct 19 2019

A258651 A(n,k) = n^(k) = k-th arithmetic derivative of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 4, 1, 6, 0, 0, 0, 0, 4, 0, 5, 7, 0, 0, 0, 0, 4, 0, 1, 1, 8, 0, 0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 0, 0, 4, 0, 0, 0, 16, 6, 10, 0, 0, 0, 0, 4, 0, 0, 0, 32, 5, 7, 11, 0, 0, 0, 0, 4, 0, 0, 0, 80, 1, 1, 1, 12
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2015

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,  0,  0,  0,   0,   0,   0,    0,    0, ...
  1,  0,  0,  0,  0,   0,   0,   0,    0,    0, ...
  2,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  3,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  4,  4,  4,  4,  4,   4,   4,   4,    4,    4, ...
  5,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  6,  5,  1,  0,  0,   0,   0,   0,    0,    0, ...
  7,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  8, 12, 16, 32, 80, 176, 368, 752, 1520, 3424, ...
  9,  6,  5,  1,  0,   0,   0,   0,    0,    0, ...
		

Crossrefs

Rows n=0,1,4,8 give: A000004, A000007, A010709, A129150.
Row 15: A090636, Row 28: A090637, Row 63: A090635, Row 81: A129151, Row 128: A369638, Row 1024: A214800, Row 15625: A129152.
Main diagonal gives A185232.
Antidiagonal sums give A258652.
Cf. also A328383.

Programs

  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
    seq(seq(A(n, h-n), n=0..h), h=0..14);
  • Mathematica
    d[n_] := n*Sum[i[[2]]/i[[1]], {i, FactorInteger[n]}]; d[0] = d[1] = 0;
    A[n_, k_] := A[n, k] = If[k == 0, n, d[A[n, k-1]]];
    Table[A[n, h-n], {h, 0, 14}, {n, 0, h}] // Flatten (* Jean-François Alcover, Apr 27 2017, translated from Maple *)

Formula

A(n,k) = A003415^k(n).

A240053 3rd Arithmetic derivation of products of 2 successive prime numbers (A006094).

Original entry on oeis.org

0, 16, 32, 10, 48, 1, 92, 1, 92, 96, 156, 1, 128, 44, 188, 608, 248, 1408, 22, 1472, 240, 324, 368, 30, 86, 288, 32, 1188, 1, 1552, 30, 560, 476, 2176, 924, 476, 5120, 60, 432, 2176, 1148, 512, 4480, 1, 1300, 324, 1, 391, 1052, 46, 720, 3232, 672, 2304, 1448, 860, 2484, 1036, 226, 768, 7232, 1628
Offset: 1

Views

Author

Freimut Marschner, Mar 31 2014

Keywords

Comments

The first arithmetic derivation of products of 2 successive prime numbers (A006094) is the sum of 2 successive prime numbers (A001043). A001043 = (A006094)’. The second arithmetic derivation is (A240052) = (A001043)’ = (A006094)’’. The third arithmetic derivation of products of 2 successive prime numbers (A006094) is a(n) = (A240052)’ = (A001043)’’ = (A006094)’’’.

Examples

			a(12)=(A006094(12))'''=(37*41)'''=(A001043(12))''=(78)''=(71)'=1;
a(14)=(A006094(14))'''=(43*47)'''=(A001043(12))''=(90)''=(123)'=44.
		

Crossrefs

Cf. A003415 (1st derivative), A068346 (2nd derivative), A099306 (3rd derivative).

Programs

  • Maple
    with(numtheory); P:= proc(q) local a,b,c,d,n,p;  a:=ithprime(n)*ithprime(n+1);
    for n from 1 to q do a:=ithprime(n)*ithprime(n+1);
    b:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]); c:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]);
    d:=c*add(op(2,p)/op(1,p),p=ifactors(c)[2]); print(d);
    od; end: P(10^4); # Paolo P. Lava, Apr 07 2014

Formula

a(n) = (A006094(n))’’’.
a(n) = A099306(A006094(n)).
a(n) = A003415(A240052(n)).

A328249 Numbers k such that the third arithmetic derivative of A276086(k) is prime.

Original entry on oeis.org

5, 15, 21, 31, 43, 79, 91, 98, 104, 106, 223, 229, 231, 254, 255, 289, 291, 301, 305, 423, 453, 456, 487, 670, 674, 677, 692, 702, 730, 736, 2343, 2378, 2380, 2400, 2409, 2534, 2537, 2543, 2552, 2562, 2585, 2602, 2618, 2629, 2767, 2804, 2821, 2831, 2839, 2942, 2943, 2957, 2962, 2963, 2974, 4621, 4669, 4672, 4687, 4717, 4841, 4844
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2019

Keywords

Comments

Numbers k such that A003415(A003415(A327860(k))) = A099306(A276086(k)) is a prime.
Numbers k such that A276086(k) is in A328239.
For all n, A327969(a(n)) <= 6. This is sharp for example with a(7) = 91.

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A327860(n) = { my(m=1, i=0, s=0, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), my(e=((n%nextpr)/pr)); m *= (prime(i)^e); s += (e / prime(i)); n-=(n%nextpr)); pr=nextpr); (s*m); };
    isA328249(n) = isprime(A003415(A003415(A327860(n))));

A369652 Maximal digit in the primorial base representation of the n-th arithmetic derivative of 128.

Original entry on oeis.org

4, 4, 6, 2, 6, 11, 8, 7, 11, 11, 8, 10, 15, 15, 12, 18, 17, 30, 28, 22, 21, 37, 28, 38, 42, 33, 22, 52, 43, 56, 47, 49, 57, 60, 55, 54, 58, 70, 52, 66, 68, 57, 63, 86, 58, 88, 92, 66, 78, 95, 85, 52, 102, 70, 111, 57, 117, 99, 136, 104, 129, 110, 146, 127, 135, 132, 131, 129, 126, 145, 112, 150, 128, 129, 154, 161, 145
Offset: 0

Views

Author

Antti Karttunen, Feb 04 2024

Keywords

Comments

This sequence relates to the question whether A327969(128) has a positive integer value, or whether it is -1 by the escape clause.
Note that when iterating the map k -> k' from A276086(A369638(4)) = A276086(15232) = 3299611946113357875 onward, the maximal exponent in the prime factorization (A051903) keeps on decreasing until it reaches 1 at the fifth iteration, and then stays as 1 for three more iterations (with k then 38863666759992439 = 643*60441161368573), but then, alas, on the next iteration, k' = 60441161369216 = 2^7 * 472196573197.

Examples

			The third arithmetic derivative (A099306) of 128 is 5056, which in primorial base (A049345) is written as 220220, therefore a(3) = 2.
The fourth arithmetic derivative (A258644) of 128 is 15232, which in primorial base is written as 663320, therefore a(4) = 6.
		

Crossrefs

Formula

a(n) = A328114(A369638(n)).
Showing 1-10 of 11 results. Next