cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A351258 a(n) = A099307(A351255(n)) - A051903(A351255(n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 3, 3, 2, 2, 1, 4, 3, 2, 2, 2, 2, 2, 3, 2, 2, 4, 9, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 9, 2, 2, 2, 5, 6, 2, 2, 2, 3, 2, 2, 2, 2, 6, 2, 6, 1, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 8, 5, 2, 2, 6, 2, 2, 9, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 6, 2, 3, 7, 3, 3, 3, 4, 2, 2, 3, 2, 8
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2022

Keywords

Comments

All terms are > 0 because from any k > 0, one certainly cannot reach 1 in less than A051903(k) iterations of the map x -> A003415(x).
One of the records occur at a(20457) = 38. The corresponding term of A351255 is A351255(20457) = A276086(A328116(20457)) = A276086(688352) = 442600020398400142264711707660915237 = 3 * 7^6 * 11^10 * 13^11 * 17^5 * 19. When starting iterating from this value with A003415, it first goes relatively smoothly in 11 steps to the first squarefree number encountered, 6201461846617177861789236821121654153, but after that, it still meanders for the additional 37 iterations (visiting mostly squarefree numbers, but also six numbers with max. exponent = 2, and one number with max. exponent = 3), before finally reaching zero.

Crossrefs

Programs

  • PARI
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A099307(n) = { my(s=1); while(n>1, n = A003415checked(n); s++); if(n,s,0); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    for(n=0, 2^9, u=A276086(n); c = A099307(u); if(c>0,print1(c-A051903(u), ", ")));

Formula

a(n) = A351257(n) - A351256(n) = A099307(A351255(n)) - A051903(A351255(n)).

A003415 a(n) = n' = arithmetic derivative of n: a(0) = a(1) = 0, a(prime) = 1, a(m*n) = m*a(n) + n*a(m).

Original entry on oeis.org

0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 10, 13, 1, 44, 10, 15, 27, 32, 1, 31, 1, 80, 14, 19, 12, 60, 1, 21, 16, 68, 1, 41, 1, 48, 39, 25, 1, 112, 14, 45, 20, 56, 1, 81, 16, 92, 22, 31, 1, 92, 1, 33, 51, 192, 18, 61, 1, 72, 26, 59, 1, 156, 1, 39, 55, 80, 18, 71
Offset: 0

Views

Author

Keywords

Comments

Can be extended to negative numbers by defining a(-n) = -a(n).
Based on the product rule for differentiation of functions: for functions f(x) and g(x), (fg)' = f'g + fg'. So with numbers, (ab)' = a'b + ab'. This implies 1' = 0. - Kerry Mitchell, Mar 18 2004
The derivative of a number x with respect to a prime number p as being the number "dx/dp" = (x-x^p)/p, which is an integer due to Fermat's little theorem. - Alexandru Buium, Mar 18 2004
The relation (ab)' = a'b + ab' implies 1' = 0, but it does not imply p' = 1 for p a prime. In fact, any function f defined on the primes can be extended uniquely to a function on the integers satisfying this relation: f(Product_i p_i^e_i) = (Product_i p_i^e_i) * (Sum_i e_i*f(p_i)/p_i). - Franklin T. Adams-Watters, Nov 07 2006
See A131116 and A131117 for record values and where they occur. - Reinhard Zumkeller, Jun 17 2007
Let n be the product of a multiset P of k primes. Consider the k-dimensional box whose edges are the elements of P. Then the (k-1)-dimensional surface of this box is 2*a(n). For example, 2*a(25) = 20, the perimeter of a 5 X 5 square. Similarly, 2*a(18) = 42, the surface area of a 2 X 3 X 3 box. - David W. Wilson, Mar 11 2011
The arithmetic derivative n' was introduced, probably for the first time, by the Spanish mathematician José Mingot Shelly in June 1911 with "Una cuestión de la teoría de los números", work presented at the "Tercer Congreso Nacional para el Progreso de las Ciencias, Granada", cf. link to the abstract on Zentralblatt MATH, and L. E. Dickson, History of the Theory of Numbers. - Giorgio Balzarotti, Oct 19 2013
a(A235991(n)) odd; a(A235992(n)) even. - Reinhard Zumkeller, Mar 11 2014
Sequence A157037 lists numbers with prime arithmetic derivative, i.e., indices of primes in this sequence. - M. F. Hasler, Apr 07 2015
Maybe the simplest "natural extension" of the arithmetic derivative, in the spirit of the above remark by Franklin T. Adams-Watters (2006), is the "pi based" version where f(p) = primepi(p), see sequence A258851. When f is chosen to be the identity map (on primes), one gets A066959. - M. F. Hasler, Jul 13 2015
When n is composite, it appears that a(n) has lower bound 2*sqrt(n), with equality when n is the square of a prime, and a(n) has upper bound (n/2)*log_2(n), with equality when n is a power of 2. - Daniel Forgues, Jun 22 2016
If n = p1*p2*p3*... where p1, p2, p3, ... are all the prime factors of n (not necessarily distinct), and h is a real number (we assume h nonnegative and < 1), the arithmetic derivative of n is equivalent to n' = lim_{h->0} ((p1+h)*(p2+h)*(p3+h)*... - (p1*p2*p3*...))/h. It also follows that the arithmetic derivative of a prime is 1. We could assume h = 1/N, where N is an integer; then the limit becomes {N -> oo}. Note that n = 1 is not a prime and plays the role of constant. - Giorgio Balzarotti, May 01 2023

Examples

			6' = (2*3)' = 2'*3 + 2*3' = 1*3 + 2*1 = 5.
Note that, for example, 2' + 3' = 1 + 1 = 2, (2+3)' = 5' = 1. So ' is not linear.
G.f. = x^2 + x^3 + 4*x^4 + x^5 + 5*x^6 + x^7 + 12*x^8 + 6*x^9 + 7*x^10 + ...
		

References

  • G. Balzarotti, P. P. Lava, La derivata aritmetica, Editore U. Hoepli, Milano, 2013.
  • E. J. Barbeau, Problem, Canad. Math. Congress Notes, 5 (No. 8, April 1973), 6-7.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chapter XIX, p. 451, Dover Edition, 2005. (Work originally published in 1919.)
  • A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, p. 295.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A086134 (least prime factor of n').
Cf. A086131 (greatest prime factor of n').
Cf. A068719 (derivative of 2n).
Cf. A068720 (derivative of n^2).
Cf. A068721 (derivative of n^3).
Cf. A001787 (derivative of 2^n).
Cf. A027471 (derivative of 3^(n-1)).
Cf. A085708 (derivative of 10^n).
Cf. A068327 (derivative of n^n).
Cf. A024451 (derivative of p#).
Cf. A068237 (numerator of derivative of 1/n).
Cf. A068238 (denominator of derivative of 1/n).
Cf. A068328 (derivative of squarefree numbers).
Cf. A068311 (derivative of n!).
Cf. A168386 (derivative of n!!).
Cf. A260619 (derivative of hyperfactorial(n)).
Cf. A260620 (derivative of superfactorial(n)).
Cf. A068312 (derivative of triangular numbers).
Cf. A068329 (derivative of Fibonacci(n)).
Cf. A096371 (derivative of partition number).
Cf. A099301 (derivative of d(n)).
Cf. A099310 (derivative of phi(n)).
Cf. A342925 (derivative of sigma(n)).
Cf. A349905 (derivative of prime shift).
Cf. A327860 (derivative of primorial base exp-function).
Cf. A369252 (derivative of products of three odd primes), A369251 (same sorted).
Cf. A068346 (second derivative of n).
Cf. A099306 (third derivative of n).
Cf. A258644 (fourth derivative of n).
Cf. A258645 (fifth derivative of n).
Cf. A258646 (sixth derivative of n).
Cf. A258647 (seventh derivative of n).
Cf. A258648 (eighth derivative of n).
Cf. A258649 (ninth derivative of n).
Cf. A258650 (tenth derivative of n).
Cf. A185232 (n-th derivative of n).
Cf. A258651 (A(n,k) = k-th arithmetic derivative of n).
Cf. A085731 (gcd(n,n')), A083345 (n'/gcd(n,n')), A057521 (gcd(n, (n')^k) for k>1).
Cf. A342014 (n' mod n), A369049 (n mod n').
Cf. A341998 (A003557(n')), A342001 (n'/A003557(n)).
Cf. A098699 (least x such that x' = n, antiderivative of n).
Cf. A098700 (n such that x' = n has no integer solution).
Cf. A099302 (number of solutions to x' = n).
Cf. A099303 (greatest x such that x' = n).
Cf. A051674 (n such that n' = n).
Cf. A083347 (n such that n' < n).
Cf. A083348 (n such that n' > n).
Cf. A099304 (least k such that (n+k)' = n' + k').
Cf. A099305 (number of solutions to (n+k)' = n' + k').
Cf. A328235 (least k > 0 such that (n+k)' = u * n' for some natural number u).
Cf. A328236 (least m > 1 such that (m*n)' = u * n' for some natural number u).
Cf. A099307 (least k such that the k-th arithmetic derivative of n is zero).
Cf. A099308 (k-th arithmetic derivative of n is zero for some k).
Cf. A099309 (k-th arithmetic derivative of n is nonzero for all k).
Cf. A129150 (n-th derivative of 2^3).
Cf. A129151 (n-th derivative of 3^4).
Cf. A129152 (n-th derivative of 5^6).
Cf. A189481 (x' = n has a unique solution).
Cf. A190121 (partial sums).
Cf. A258057 (first differences).
Cf. A229501 (n divides the n-th partial sum).
Cf. A165560 (parity).
Cf. A235991 (n' is odd), A235992 (n' is even).
Cf. A327863, A327864, A327865 (n' is a multiple of 3, 4, 5).
Cf. A157037 (n' is prime), A192192 (n'' is prime), A328239 (n''' is prime).
Cf. A328393 (n' is squarefree), A328234 (squarefree and > 1).
Cf. A328244 (n'' is squarefree), A328246 (n''' is squarefree).
Cf. A328303 (n' is not squarefree), A328252 (n' is squarefree, but n is not).
Cf. A328248 (least k such that the (k-1)-th derivative of n is squarefree).
Cf. A328251 (k-th arithmetic derivative is never squarefree for any k >= 0).
Cf. A256750 (least k such that the k-th derivative is either 0 or has a factor p^p).
Cf. A327928 (number of distinct primes p such that p^p divides n').
Cf. A342003 (max. exponent k for any prime power p^k that divides n').
Cf. A327929 (n' has at least one divisor of the form p^p).
Cf. A327978 (n' is primorial number > 1).
Cf. A328243 (n' is a partial sum of primorial numbers and larger than one).
Cf. A328310 (maximal prime exponent of n' minus maximal prime exponent of n).
Cf. A328320 (max. prime exponent of n' is less than that of n).
Cf. A328321 (max. prime exponent of n' is >= that of n).
Cf. A328383 (least k such that the k-th derivative of n is either a multiple or a divisor of n, but not both).
Cf. A263111 (the ordinal transform of a).
Cf. A300251, A319684 (Möbius and inverse Möbius transform).
Cf. A305809 (Dirichlet convolution square).
Cf. A349133, A349173, A349394, A349380, A349618, A349619, A349620, A349621 (for miscellaneous Dirichlet convolutions).
Cf. A069359 (similar formula which agrees on squarefree numbers).
Cf. A258851 (the pi-based arithmetic derivative of n).
Cf. A328768, A328769 (primorial-based arithmetic derivatives of n).
Cf. A328845, A328846 (Fibonacci-based arithmetic derivatives of n).
Cf. A302055, A327963, A327965, A328099 (for other variants and modifications).
Cf. A038554 (another sequence using "derivative" in its name, but involving binary expansion of n).
Cf. A322582, A348507 (lower and upper bounds), also A002620.

Programs

  • GAP
    A003415:= Concatenation([0,0],List(List([2..10^3],Factors),
    i->Product(i)*Sum(i,j->1/j))); # Muniru A Asiru, Aug 31 2017
    (APL, Dyalog dialect) A003415 ← { ⍺←(0 1 2) ⋄ ⍵≤1:⊃⍺ ⋄ 0=(3⊃⍺)|⍵:((⊃⍺+(2⊃⍺)×(⍵÷3⊃⍺)) ((2⊃⍺)×(3⊃⍺)) (3⊃⍺)) ∇ ⍵÷3⊃⍺ ⋄ ((⊃⍺) (2⊃⍺) (1+(3⊃⍺))) ∇ ⍵} ⍝ Antti Karttunen, Feb 18 2024
  • Haskell
    a003415 0 = 0
    a003415 n = ad n a000040_list where
      ad 1 _             = 0
      ad n ps'@(p:ps)
         | n < p * p     = 1
         | r > 0         = ad n ps
         | otherwise     = n' + p * ad n' ps' where
           (n',r) = divMod n p
    -- Reinhard Zumkeller, May 09 2011
    
  • Magma
    Ad:=func; [n le 1 select 0 else Ad(n): n in [0..80]]; // Bruno Berselli, Oct 22 2013
    
  • Maple
    A003415 := proc(n) local B,m,i,t1,t2,t3; B := 1000000000039; if n<=1 then RETURN(0); fi; if isprime(n) then RETURN(1); fi; t1 := ifactor(B*n); m := nops(t1); t2 := 0; for i from 1 to m do t3 := op(i,t1); if nops(t3) = 1 then t2 := t2+1/op(t3); else t2 := t2+op(2,t3)/op(op(1,t3)); fi od: t2 := t2-1/B; n*t2; end;
    A003415 := proc(n)
            local a,f;
            a := 0 ;
            for f in ifactors(n)[2] do
                    a := a+ op(2,f)/op(1,f);
            end do;
            n*a ;
    end proc: # R. J. Mathar, Apr 05 2012
  • Mathematica
    a[ n_] := If[ Abs @ n < 2, 0, n Total[ #2 / #1 & @@@ FactorInteger[ Abs @ n]]]; (* Michael Somos, Apr 12 2011 *)
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Table[dn[n], {n, 0, 100}] (* T. D. Noe, Sep 28 2012 *)
  • PARI
    A003415(n) = {local(fac);if(n<1,0,fac=factor(n);sum(i=1,matsize(fac)[1],n*fac[i,2]/fac[i,1]))} /* Michael B. Porter, Nov 25 2009 */
    
  • PARI
    apply( A003415(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]), [0..99]) \\ M. F. Hasler, Sep 25 2013, updated Nov 27 2019
    
  • PARI
    A003415(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= spf); (s); }; \\ Antti Karttunen, Mar 10 2021
    
  • PARI
    a(n) = my(f=factor(n), r=[1/(e+!e)|e<-f[,1]], c=f[,2]); n*r*c; \\ Ruud H.G. van Tol, Sep 03 2023
    
  • Python
    from sympy import factorint
    def A003415(n):
        return sum([int(n*e/p) for p,e in factorint(n).items()]) if n > 1 else 0
    # Chai Wah Wu, Aug 21 2014
    
  • Sage
    def A003415(n):
        F = [] if n == 0 else factor(n)
        return n * sum(g / f for f, g in F)
    [A003415(n) for n in range(79)] # Peter Luschny, Aug 23 2014
    

Formula

If n = Product p_i^e_i, a(n) = n * Sum (e_i/p_i).
a(m*p^p) = (m + a(m))*p^p, p prime: a(m*A051674(k))=A129283(m)*A051674(k). - Reinhard Zumkeller, Apr 07 2007
For n > 1: a(n) = a(A032742(n)) * A020639(n) + A032742(n). - Reinhard Zumkeller, May 09 2011
a(n) = n * Sum_{p|n} v_p(n)/p, where v_p(n) is the largest power of the prime p dividing n. - Wesley Ivan Hurt, Jul 12 2015
For n >= 2, Sum_{k=2..n} floor(1/a(k)) = pi(n) = A000720(n) (see K. T. Atanassov article). - Ivan N. Ianakiev, Mar 22 2019
From A.H.M. Smeets, Jan 17 2020: (Start)
Limit_{n -> oo} (1/n^2)*Sum_{i=1..n} a(i) = A136141/2.
Limit_{n -> oo} (1/n)*Sum_{i=1..n} a(i)/i = A136141.
a(n) = n if and only if n = p^p, where p is a prime number. (End)
Dirichlet g.f.: zeta(s-1)*Sum_{p prime} 1/(p^s-p), see A136141 (s=2), A369632 (s=3) [Haukkanen, Merikoski and Tossavainen]. - Sebastian Karlsson, Nov 25 2021
From Antti Karttunen, Nov 25 2021: (Start)
a(n) = Sum_{d|n} d * A349394(n/d).
For all n >= 1, A322582(n) <= a(n) <= A348507(n).
If n is not a prime, then a(n) >= 2*sqrt(n), or in other words, for all k >= 1 for which A002620(n)+k is not a prime, we have a(A002620(n)+k) > n. [See Ufnarovski and Åhlander, Theorem 9, point (3).]
(End)

Extensions

More terms from Michel ten Voorde, Apr 11 2001

A099308 Numbers m whose k-th arithmetic derivative is zero for some k. Complement of A099309.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 21, 22, 23, 25, 29, 30, 31, 33, 34, 37, 38, 41, 42, 43, 46, 47, 49, 53, 57, 58, 59, 61, 62, 65, 66, 67, 70, 71, 73, 77, 78, 79, 82, 83, 85, 89, 93, 94, 97, 98, 101, 103, 105, 107, 109, 113, 114, 118, 121, 126, 127, 129, 130
Offset: 1

Views

Author

T. D. Noe, Oct 12 2004

Keywords

Comments

The first derivative of 0 and 1 is 0. The second derivative of a prime number is 0.
For all n, A003415(a(n)) is also a term of the sequence. A351255 gives the nonzero terms as ordered by their position in A276086. - Antti Karttunen, Feb 14 2022

Examples

			18 is on this list because the first through fifth derivatives are 21, 10, 7, 1, 0.
		

References

Crossrefs

Cf. A003415 (arithmetic derivative of n), A099307 (least k such that the k-th arithmetic derivative of n is zero), A099309 (complement, numbers whose k-th arithmetic derivative is nonzero for all k), A351078 (first noncomposite reached when iterating the derivative from these numbers), A351079 (the largest term on such paths).
Cf. A328308, A328309 (characteristic function and their partial sums), A341999 (1 - charfun).
Cf. A276086, A328116, A351255 (permutation of nonzero terms), A351257, A351259, A351261, A351072 (number of prime(k)-smooth terms > 1).
Cf. also A256750 (number of iterations needed to reach either 0 or a number with a factor of the form p^p), A327969, A351088.
Union of A359544 and A359545.

Programs

  • Mathematica
    dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; nLim=200; lst={1}; i=1; While[i<=Length[lst], currN=lst[[i]]; pre=Intersection[Flatten[Position[d1, currN]], Range[nLim]]; pre=Complement[pre, lst]; lst=Join[lst, pre]; i++ ]; Union[lst]
  • PARI
    \\ The following program would get stuck in nontrivial loops. However, we assume that the conjecture 3 in Ufnarovski & Åhlander paper holds ("The differential equation n^(k) = n has only trivial solutions p^p for primes p").
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    isA099308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n)); \\ Antti Karttunen, Feb 14 2022

Formula

For all n >= 0, A328309(a(n)) = n. - Antti Karttunen, Feb 14 2022

A099309 Numbers n whose k-th arithmetic derivative is nonzero for all k. Complement of A099308.

Original entry on oeis.org

4, 8, 12, 15, 16, 20, 24, 26, 27, 28, 32, 35, 36, 39, 40, 44, 45, 48, 50, 51, 52, 54, 55, 56, 60, 63, 64, 68, 69, 72, 74, 75, 76, 80, 81, 84, 86, 87, 88, 90, 91, 92, 95, 96, 99, 100, 102, 104, 106, 108, 110, 111, 112, 115, 116, 117, 119, 120, 122, 123, 124, 125, 128, 132
Offset: 1

Views

Author

T. D. Noe, Oct 12 2004

Keywords

Comments

Numbers of the form n = m*p^p (where p is prime), i.e., multiples of some term in A051674, have n' = (m + m')*p^p, which is again of the same form, but strictly larger iff m > 1. Therefore successive derivatives grow to infinity in this case, and they are constant when m = 1. There are other terms in this sequence, but I conjecture that they all eventually lead to a term of this form, e.g., 26 -> 15 -> 8 etc. - M. F. Hasler, Apr 09 2015

References

Crossrefs

Cf. A003415 (arithmetic derivative of n), A099307 (least k such that the k-th arithmetic derivative of n is zero), A099308 (numbers whose k-th arithmetic derivative is zero for some k).
Cf. A341999 (characteristic function),
Positions of zeros in A256750, A351078, A351079 (after their initial zeros), also in A328308, A328312.
Subsequences include: A100716, A327929, A327934, A328251, A359547 (intersection with A048103).

Programs

  • PARI
    is(n)=until(4>n=factorback(n~)*sum(i=1,#n,n[2,i]/n[1,i]), for(i=1,#n=factor(n)~,n[1,i]>n[2,i]||return(1))) \\ M. F. Hasler, Apr 09 2015

A256750 Start with n, and repeatedly apply the arithmetic derivative A003415. |a(n)| = the number of iterations to reach 0 (then a(n) is taken nonnegative) or a number having a factor of the form p^p with prime p, in which case a(n) = -|a(n)|.

Original entry on oeis.org

0, 1, 2, 2, 0, 2, 3, 2, 0, 4, 3, 2, 0, 2, 5, -1, 0, 2, 5, 2, 0, 4, 3, 2, 0, 4, -2, 0, 0, 2, 3, 2, 0, 6, 3, -1, 0, 2, 5, -1, 0, 2, 3, 2, 0, -2, 5, 2, 0, 6, -3, -1, 0, 2, 0, -1, 0, 4, 3, 2, 0, 2, 7, -2, 0, 6, 3, 2, 0, -3, 3, 2, 0, 2, -2, -2, 0, 6, 3, 2, 0, 0, 3, 2, 0, 4, -3, -1, 0, 2, -2, -1, 0, 4, 7, -1, 0, 2, 7, -3
Offset: 0

Views

Author

M. F. Hasler, Apr 09 2015

Keywords

Comments

Under iterations of the arithmetic derivative, the orbit of some numbers ends in zero, and the orbit of all others (I conjecture) reaches a number of the form m*p^p with prime p, from where on it keeps this form and grows to infinity iff m>1, or remains at this fixed point if m=1.
This is an extension of the sequence A099307 which counts the steps to reach 0 or yields 0 if this never happens.

Crossrefs

Cf. A003415 (arithmetic derivative of n), A099307 (least k such that the k-th arithmetic derivative of n is zero), A099308 (numbers whose k-th arithmetic derivative is zero for some k, positions of terms > 0 after the initial 0), A099309 (numbers whose k-th arithmetic derivative is nonzero for all k, positions of terms <= 0 after the initial 0), A359547 (positions of negative terms), A327934 (positions of -1's).
Cf. also A327966, A327969 (A328324).

Programs

  • Mathematica
    w = {}; nn = 2^16; k = 1; While[Set[m, #^#] <= nn &[Prime[k]], AppendTo[w, m]; k++]; a3415[n_] := a3415[n] = Which[n < 2, 0, PrimeQ[n], 1, True, n Total[#2/#1 & @@@ FactorInteger[n]]]{0, 1}~Join~Reap[Do[Which[PrimeQ[n], Sow[2], MemberQ[w, n], Sow[0], True, Sow@ If[#[[-1]] == 0, Length[#] - 1, -Length[#] + 1] &[NestWhileList[a3415, n, And[! Divisible[#, 4], FreeQ[w, #]] &, 1]]], {n, 2, nn}] ][[-1, -1]] (* Michael De Vlieger, Jan 04 2023 *)
  • PARI
    a(n,c=0)={n&&until(!n=factorback(n~)*sum(i=1,#n,n[2,i]/n[1,i]),for(i=1,#n=factor(n)~,n[1,i]>n[2,i]||return(-c));c++);c}

Formula

a(n) = 0 <=> n = 0 or n = m*p^p for some prime p and some m >= 1 (which is a fixed point iff m = 1).
a(n) = 1 <=> n = 1.
a(n) = 2 <=> n is prime.
a(n) <= 0 <=> n is in A099309 U {0}. If n > 0, the iterations of A003415 applied to n end in a nonzero fixed point or grow to infinity.
a(n) > 0 <=> n is in A099308 \ {0}.
A099307(n) = min { 0, a(n) }.

A351255 Numbers whose k-th arithmetic derivative is zero for some k>0, ordered by their position in A276086.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 30, 25, 150, 375, 750, 5625, 7, 14, 21, 42, 126, 70, 105, 315, 350, 1575, 3150, 1750, 2625, 49, 98, 882, 490, 735, 4410, 2450, 3675, 11025, 12250, 30625, 61250, 183750, 686, 3430, 5145, 25725, 77175, 385875, 1929375, 3858750, 4802, 72030, 120050, 180075, 33614, 100842, 117649, 705894, 26471025
Offset: 1

Views

Author

Antti Karttunen, Feb 10 2022

Keywords

Comments

Equal to nonzero terms of A099308 when sorted into ascending order. In this order, which is dictated by the primorial base expansion of n (A049345) and mapped to products of prime powers by A276086, all terms of A099308 that are prime(k)-smooth appear before the terms that are not prime(k)-smooth.
Number of terms whose greatest prime factor (A006530) is prime(n) [in other words, that are prime(n)-smooth but not prime(n-1)-smooth] is given by A351071(n): 1, 4, 8, 44, 216, 1474, 11130, ...
For all n > 1, A003415(a(n)) is also a term of the sequence.
Note that only 451 of the first 105367 terms (all 19-smooth terms) are such that there occurs a 19-smooth number (A080682) larger than 1 on the path before 1 is encountered, when starting from x = a(n) and iterating with map x -> A003415(x).

Crossrefs

Cf. A003415, A049345, A099307, A099308, A276086, A328116, A351071, A351072 (number of prime(n)-smooth terms).
Cf. A351256 [= A051903(a(n))], A351257 [= A099307(a(n))], A351258, A351259 [= A351078(a(n))], A351261 [= A351079(a(n))].

Programs

  • PARI
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    A099307(n) = { my(s=1); while(n>1, n = A003415checked(n); s++); if(n,s,0); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    for(n=0, 2^9, u=A276086(n); c = A099307(u); if(c>0,print1(u, ", ")));

Formula

a(n) = A276086(A328116(n)).

A099306 n''', the third arithmetic derivative of n.

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 0, 0, 32, 1, 0, 0, 80, 0, 5, 16, 176, 0, 7, 0, 48, 1, 0, 0, 112, 1, 12, 27, 176, 0, 0, 0, 368, 6, 0, 32, 96, 0, 7, 80, 156, 0, 0, 0, 240, 32, 7, 0, 608, 6, 16, 44, 96, 0, 216, 80, 272, 1, 0, 0, 272, 0, 9, 24, 2368, 10, 0, 0, 220, 8, 0, 0, 284, 0
Offset: 0

Views

Author

T. D. Noe, Oct 12 2004

Keywords

Comments

For prime p, a(p^p) = p^p.
a(A157037(n)) = 0. - Reinhard Zumkeller, Feb 22 2009

References

Crossrefs

Cf. A003415 (arithmetic derivative of n), A068346 (second arithmetic derivative of n), A099307 (least k such that the k-th arithmetic derivative of n is zero).
Column k=3 of A258651.

Programs

  • Mathematica
    dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[dn[dn[dn[n]]], {n, 100}]

Formula

a(n) = A003415(A003415(A003415(n))).

A351257 Least k such that the k-th arithmetic derivative of A351255(n) is zero.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 2, 3, 3, 4, 5, 6, 5, 6, 2, 5, 4, 3, 4, 3, 3, 4, 5, 4, 4, 7, 12, 6, 7, 4, 4, 4, 4, 4, 4, 4, 5, 8, 8, 6, 5, 12, 5, 5, 5, 8, 10, 6, 6, 6, 7, 6, 7, 7, 8, 12, 8, 12, 2, 3, 6, 3, 3, 4, 4, 5, 4, 4, 4, 8, 5, 5, 6, 12, 6, 3, 3, 7, 3, 3, 10, 3, 4, 5, 5, 4, 4, 6, 4, 4, 4, 6, 5, 5, 6, 5, 9, 5, 6, 10, 7, 7, 7
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2022

Keywords

Comments

a(n) is the number of iterations of the map x -> A003415(x) needed to reach zero, when starting from x = A351255(n).

Examples

			From A351255(27) = 2625 it takes 12 iterations of map x -> A003415(x) to reach zero, as 2625 -> 2825 -> 1155 -> 886 -> 445 -> 94 -> 49 -> 14 -> 9 -> 6 -> 5 -> 1 -> 0, therefore a(27) = 12.
		

Crossrefs

Programs

  • PARI
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    A099307(n) = { my(s=1); while(n>1, n = A003415checked(n); s++); if(n,s,0); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    for(n=0, 2^9, u=A276086(n); c = A099307(u); if(c>0,print1(c, ", ")));

Formula

a(n) = A099307(A351255(n)).
For all n, a(n) > A351256(n). [See A351258 for the differences].

A327975 Breadth-first reading of the subtree rooted at 5 of the tree where each parent node is the arithmetic derivative (A003415) of all its children.

Original entry on oeis.org

5, 6, 9, 14, 33, 49, 62, 94, 177, 817, 961, 445, 913, 1633, 2173, 2209, 1146, 886, 1822, 4414, 19193, 25829, 32393, 41033, 47429, 57929, 64133, 88229, 101753, 111173, 116729, 129413, 138233, 148553, 160229, 173093, 183929, 188453, 208613, 216773, 232229, 235913, 244229, 249929, 257573, 262793, 272633, 278153, 282533, 288329, 294473, 304613, 316229, 320933, 322853, 323429, 327653, 328313, 1155, 2649
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2019

Keywords

Comments

Permutation of A328115.
The branching degree of vertex v is given by A099302(v).
Leaves form a subsequence of A098700.
Most terms of A189760 (apart from 0, 1, 2, 414, ...) seem to be located in this tree, in positions where they have no smaller siblings.
For any number k at level n (where 5 is at level 2), we have A256750(k) = A327966(k) = n.
Question: Does this subtree contain infinitely long paths? How many? Cf. conjecture number 8 in Ufnarovski and Ahlander paper, and a similar tree starting from 7, A327977.

Examples

			Because we have A003415(5) = 1, A003415(6) = 5, A003415(9) = 6, A003415(14) = 9, A003415(33) = A003415(49) = 14, A003415(62) = 33, etc, this subtree is laid out as below. The terms of this sequence are obtained by scanning each successive level of the tree from left to right, from the node 5 onward:
   (0)
    |
   (1)
    |
    5
    |
    6
    |
    9
    |
    14________________
    |                 |
    33               49
    |                 |
    62________       94_____________________________
    |    |    |       |       |      |      |       |
    |    |    |       |       |      |      |       |
   177  817  961     445     913   1633   2173    2209
              |       |       |                     |
              |       |       |                     |
            1146     886    1822                  4414
              |       |       |                     |
              |       |       |                     |
            (19193,  (1155,  (19921, ..., 829921)  (22045, ..., 4870849)
             25829,   2649,                        [49 children for 4414]
               ...,  ...,    [27 children for 1822]
            328313)  196249)
                     [19 children for 886]
        [38 children
         for 1146]
The row lengths thus start as: 1, 1, 1, 1, 2, 2, 8, 4, 133 (= 38+19+27+49), ...
		

Crossrefs

Cf. A327977 for the subtree starting from 7, and also A263267 for another similar tree.

Programs

  • PARI
    A002620(n) = ((n^2)>>2);
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A327975list(e) = { my(lista=List([5]), f); for(n=1, e, f = lista[n]; for(k=1,1+A002620(f),if(A003415(k)==f, listput(lista,k)))); Vec(lista); };
    v328975 = A327975list(21);
    A327975(n) = v328975[n];
    
  • Sage
    # uses[A003415]
    def A327975():
      '''Breadth-first reading of irregular subtree rooted at 5, defined by the edge-relation A003415(child) = parent.'''
      yield 5
      for x in A327975():
        for k in [1 .. 1+(x*x)//2]:
          if A003415(k) == x: yield k
    def take(n, g):
      '''Returns a list composed of the next n elements returned by generator g.'''
      z = []
      if 0 == n: return z
      for x in g:
        z.append(x)
        if n > 1: n = n-1
        else: return(z)
    take(60, A327975())

A327977 Breadth-first reading of the subtree rooted at 7 of the tree where each parent node is the arithmetic derivative (A003415) of all its children.

Original entry on oeis.org

7, 10, 21, 25, 18, 38, 46, 65, 77, 217, 361, 129, 205, 493, 529, 98, 426, 718, 170, 254, 462, 982, 1501, 2077, 2257, 2105, 2933, 6953, 11513, 14393, 16469, 17813, 19769, 21653, 24053, 25769, 27413, 29993, 34553, 35369, 41273, 42233, 42869, 44969, 45113, 45173, 11917, 27757, 38881, 45937, 62317, 76897, 84781, 102637, 111457, 114481, 117217, 118477, 120781, 127117, 128881, 501, 1141
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2019

Keywords

Comments

Permutation of A328117.
The branching degree of vertex v is given by A099302(v).
Leaves form a subsequence of A098700.
For any number k at level n (where 7 is at level 2), we have A256750(k) = A327966(k) = n.
Question: Does this subtree contain infinitely long paths? How many? Cf. conjecture number 8 in Ufnarovski and Ahlander paper. As an example of possible beginning of such a sequence they give: 1 ← 7 ← 10 ← 25 ← 46 ← 129 ← 170 ← 501 ← 414 ← 2045.

Examples

			The subtree is laid out as below. The terms of this sequence are obtained by scanning each successive level of the tree from left to right, from the node 7 onward:
   (0)
    |
   (1)
    |
    7
    |
    10______________________________
    |                               |
    21________                     25
    |         |                     |
    18___    38_____               46_________________________________
    |    |    |     |               |            |      |             |
    65   77  217   361____         129____      205    493_____      529
         |          |     |         |     |             |      |
         98        426   718       170   254           462    982
         |          |     |         |     |             |      |
        [3]       [21]   [15]      [9]   [9]           [28]   [17]
On the last level illustrated above, the numbers in brackets [ ] tell how many children the node has. E.g, there are three for 98: 1501, 2077, 2257, as A003415(1501) = A003415(2077) = A003415(2257) = 98, and nine for 170: 501, 1141, 2041, 2869, 4309, 5461, 6649, 6901, 7081.
		

Crossrefs

Cf. A327975 for the subtree starting from 5, and also A263267 for another similar tree.

Programs

  • PARI
    A002620(n) = ((n^2)>>2);
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A327977list(e) = { my(lista=List([7]), f); for(i=1, e, f = lista[i]; for(k=1,1+A002620(f),if(A003415(k)==f, listput(lista,k)))); Vec(lista); };
    
  • PARI
    \\ With precomputed large A328117, use this:
    v328117 = readvec("a328117.txt");
    A327977list(e) = { my(lista=List([7]), f, i); for(n=1, e, f = lista[n]; print("n=",n," #lista=", #lista, " A002620(",f,")=",A002620(f)); my(u=1+A002620(f)); if(u>=v328117[#v328117],print("Not enough precomputed terms of A328117 as search upper limit ", u, " > ", v328117[#v328117], " (the last item in v328117). Number of expansions so far=", n); return(1/0)); i=1; while(v328117[i]A003415(v328117[i])==f, listput(lista,v328117[i])); i++)); Vec(lista); };
    v327977 = A327977list(114);
    A327977(n) = v327977[n];
    for(n=1,#v327977,write("b327977.txt", n, " ", A327977(n)));
    
  • Sage
    # uses[A003415]
    def A327977():
      '''Breadth-first reading of irregular subtree rooted at 7, defined by the edge-relation A003415(child) = parent. Starts giving terms from 7 onward, after a(0) = 0 and a(1) = 1.'''
      yield 7
      for x in A327977():
        for k in [1 .. 1+floor((x*x)/2)]:
          if(A003415(k) == x): yield k
    def take(n, g):
      '''Returns a list composed of the next n elements returned by generator g.'''
      z = []
      if 0 == n: return(z)
      for x in g:
        z.append(x)
        if n > 1: n = n-1
        else: return(z)
    take(52, A327977())
Showing 1-10 of 16 results. Next