A102901 a(n) = a(n-1) + 6*a(n-2), a(0)=1, a(1)=0.
1, 0, 6, 6, 42, 78, 330, 798, 2778, 7566, 24234, 69630, 215034, 632814, 1923018, 5719902, 17258010, 51577422, 155125482, 464590014, 1395342906, 4182882990, 12554940426, 37652238366, 112981880922, 338895311118, 1016786596650
Offset: 0
Examples
a(6) = 330; (2*3^6 + 3*(-2)^6)/5 = (1458 + 192)/5 = 330.
References
- Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,6).
Programs
-
Magma
[(2*3^n+3*(-2)^n)/5: n in [0..50]]; // Vincenzo Librandi, Jul 20 2013
-
Maple
A102901:=n->(2*3^n+3*(-2)^n)/5; seq(A102901(k), k=0..60); # Wesley Ivan Hurt, Nov 05 2013
-
Mathematica
CoefficientList[Series[(1-x)/((1+2x)(1-3x)), {x,0,50}], x] (* Vincenzo Librandi, Jul 20 2013 *)
-
PARI
a(n)=([0,1; 6,1]^n*[1;0])[1,1] \\ Charles R Greathouse IV, Mar 28 2016
-
SageMath
A102901=BinaryRecurrenceSequence(1,6,1,0) [A102901(n) for n in range(51)] # G. C. Greubel, Dec 09 2022
Comments