A074784 a(n) = a(n-1) + square of the sum of digits of n.
0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 286, 290, 299, 315, 340, 376, 425, 489, 570, 670, 674, 683, 699, 724, 760, 809, 873, 954, 1054, 1175, 1184, 1200, 1225, 1261, 1310, 1374, 1455, 1555, 1676, 1820, 1836, 1861, 1897, 1946, 2010, 2091, 2191, 2312, 2456
Offset: 0
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000 (terms 1..990 from Indranil Ghosh)
- Tom C. Brown, Powers of Digital Sums, The Fibonacci Quarterly, Vol. 32, No. 3 (1994), pp. 207-210.
- Jean Coquet, Power sums of digital sums, J. Number Theory, Vol. 22, No. 2 (1986), pp. 161-176.
- P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993, pp. 263-271; alternative link.
- Robert E. Kennedy and Curtis N. Cooper, An extension of a theorem by Cheo and Yien concerning digital sums, Fibonacci Quarterly, Vol. 29, No. 2 (1991), pp. 145-149.
- J.-L. Mauclaire and Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 6 (1983), pp. 274-276.
- J.-L. Mauclaire and Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 9 (1983), pp. 441-444.
- Harald Riede, Asymptotic estimation of a sum of digits, Fibonacci Quarterly, Vol. 36, No. 1 (1998), pp. 72-75.
- J. R. Trollope, An explicit expression for binary digital sums, Math. Mag., Vol. 41, No. 1 (1968), pp. 21-25.
Programs
-
Magma
[n eq 1 select n else Self(n-1)+(&+Intseq(n))^2: n in [1..48]]; // Bruno Berselli, Jul 12 2011
-
Maple
See A037123.
-
Mathematica
Accumulate @ Array[(Plus @@ IntegerDigits[#])^2 &, 50] (* Amiram Eldar, Jan 20 2022 *)
Formula
a(n) = Sum_{k=1..n} s(k)^2 = Sum_{k=1..n} A007953(k)^2, where s(k) denotes the sum of the digits of k in decimal representation.
Asymptotic expression: a(n-1) = Sum_{k=1..n-1} s(k)^2 = 20.25*n*log_10(n)^2 + O(n*log_10(n)).
In general: Sum_{k=1..n-1} s(k)^m = n*((9/2)*log_10(n))^m + O(n*log_10(n)^(m-1)).
Extensions
Offset changed to 0 and a(0) prepended by Amiram Eldar, Jan 20 2022
Comments