cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A123583 Triangle read by rows: T(n, k) is the coefficient of x^k in the polynomial 1 - T_n(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.

Original entry on oeis.org

0, 1, 0, -1, 0, 0, 4, 0, -4, 1, 0, -9, 0, 24, 0, -16, 0, 0, 16, 0, -80, 0, 128, 0, -64, 1, 0, -25, 0, 200, 0, -560, 0, 640, 0, -256, 0, 0, 36, 0, -420, 0, 1792, 0, -3456, 0, 3072, 0, -1024, 1, 0, -49, 0, 784, 0, -4704, 0, 13440, 0, -19712, 0, 14336, 0, -4096
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 12 2006

Keywords

Comments

All row sum are zero. Row sums of absolute values are in A114619. - Klaus Brockhaus, May 29 2009

Examples

			First few rows of the triangle are:
  0;
  1, 0,  -1;
  0, 0,   4, 0,   -4;
  1, 0,  -9, 0,   24, 0,  -16;
  0, 0,  16, 0,  -80, 0,  128, 0,   -64;
  1, 0, -25, 0,  200, 0, -560, 0,   640, 0, -256;
  0, 0,  36, 0, -420, 0, 1792, 0, -3456, 0, 3072, 0, -1024;
First few polynomials (p(n, x) = 1 - T_{n}(x)^2) are:
  p(0, x) = 0,
  p(1, x) = 1 -    x^2,
  p(2, x) = 0    4*x^2 -   4*x^4,
  p(3, x) = 1 -  9*x^2 +  24*x^4 -   16*x^6,
  p(4, x) = 0   16*x^2 -  80*x^4 +  128*x^6 -   64*x^8,
  p(5, x) = 1 - 25*x^2 + 200*x^4 -  560*x^6 +  640*x^8 -  256*x^10,
  p(6, x) = 0   36*x^2 - 420*x^4 + 1792*x^6 - 3456*x^8 + 3072*x^10 - 1024*x^12.
		

Crossrefs

Programs

  • Magma
    [0] cat &cat[ Coefficients(1-ChebyshevT(n)^2): n in [1..8] ];
    
  • Mathematica
    (* First program *)
    Table[CoefficientList[1 - ChebyshevT[n, x]^2, x], {n, 0, 10}]//Flatten
    (* Second program *)
    T[n_, k_]:= T[n, k]= SeriesCoefficient[(1 -ChebyshevT[2*n,x])/2, {x,0,k}];
    Table[T[n, k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Jul 02 2021 *)
  • PARI
    v=[]; for(n=0, 8, v=concat(v, vector(2*n+1, j, polcoeff(1-poltchebi(n)^2, j-1)))); v
    
  • Sage
    def T(n): return ( (1 - chebyshev_T(2*n, x))/2 ).full_simplify().coefficients(sparse=False)
    flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 02 2021

Formula

T(n, k) = coefficients of ( 1 - ChebyshevT(n, x)^2 ).
T(n, k) = coefficients of ( (1 - ChebyshevT(2*n, x))/2 ). - G. C. Greubel, Jul 02 2021

Extensions

Edited by N. J. A. Sloane, Mar 09 2008

A082649 Triangle of coefficients in expansion of sinh^2(n*x) in powers of sinh(x).

Original entry on oeis.org

1, 4, 4, 16, 24, 9, 64, 128, 80, 16, 256, 640, 560, 200, 25, 1024, 3072, 3456, 1792, 420, 36, 4096, 14336, 19712, 13440, 4704, 784, 49, 16384, 65536, 106496, 90112, 42240, 10752, 1344, 64, 65536, 294912, 552960, 559104, 329472, 114048, 22176, 2160, 81, 262144, 1310720, 2785280, 3276800, 2329600
Offset: 1

Views

Author

Gary W. Adamson, May 16 2003, suggested by Herb Conn

Keywords

Comments

Using arcsin(x) = Pi/2 - arccos(x), valid for -1 < = x <= 1, we find sin^2(k*arcsin(x)) = sin^2(k*arccos(x)) for k odd, while sin^2(k*arcsin(x)) = 1 - sin^2(k*arccos(x)) for k even. Thus the expansion of sin^2(n*x) in powers of cos(x) will produce a similar table of coefficients. See the example section below. - Peter Bala, Feb 02 2017

Examples

			sinh^2 x = sinh^2 x
sinh^2 2x = 4 sinh^4 x + 4 sinh^2 x
sinh^2 3x = 16 sinh^6 x + 24 sinh^4 x + 9 sinh^2 x
sinh^2 4x = 64 sinh^8 x + 128 sinh^6 x + 80 sinh^4 x + 16 sinh^2 x
sinh^2 5x = 256 sinh^10 x + 640 sinh^8 x + 560 sinh^6 x + 200 sinh^4 x + 25 sinh^2 x
From _Peter Bala_, Feb 02 2016: (Start)
sin^2(x) = 1 - cos^2(x);
sin^2(2*x) = -4*cos^4(x) + 4*cos^2(x);
sin^2(3*x) = 1 - (16*cos^6(x) - 24*cos^4(x) + 9*cos^2(x));
sin^2(4*x) = -64*cos^8(x) + 128*cos^6(x) - 80*cos^4(x) + 16*cos^2(x);
sin^2(5*x) = 1 - (256*cos^10(x) - 640*cos^8(x) + 560*cos^6(x) - 200*cos^4(x) + 25*cos^2(x)). (End)
		

Crossrefs

A001108 gives row sums.
Closely related to A123583 and A123588.

Programs

  • Maple
    g:= (1+x*y)/((1-x*y)*(1-(4+2*y)*x+x^2*y^2)):
    S:= series(g,x,15):
    seq(seq(coeff(coeff(S,x,n),y,k),k=0..n),n=0..14); # Robert Israel, Dec 20 2017
  • Mathematica
    Table[Reverse[CoefficientList[1/x TrigExpand[Sinh[n ArcSinh[Sqrt[x]]]^2], x]], {n, 7}] // Flatten (* Eric W. Weisstein, Apr 05 2017 *)
    Abs[Table[CoefficientList[x^n Piecewise[{{1 - ChebyshevT[n, 1/Sqrt[x]]^2, Mod[n, 2] == 0}, {ChebyshevT[n, 1/Sqrt[x]]^2, Mod[n, 2] == 1}}], x], {n, 10}]] // Flatten (* Eric W. Weisstein, Apr 05 2017 *)

Formula

Coefficients are: 4^(n-1), (2n)4^(n-2), (2n)(2n-3)4^(n-3)/2!, (2n)(2n-4)(2n-5)4^(n-4)/3!, (2n)(2n-5)(2n-6)(2n-7)4^(n-5)/4!, (2n)(2n-6)(2n-7)(2n-8)(2n-9)4^(n-6)/5!...
G.f. as triangle: (1+x*y)/((1-x*y)*(1-(4+2*y)*x+x^2*y^2)). - Robert Israel, Dec 20 2017

Extensions

More terms from Robert Israel, Dec 20 2017

A138331 a(n) = C(n+5, 5)*(n+3)*(-1)^(n+1)*16/3.

Original entry on oeis.org

-16, 128, -560, 1792, -4704, 10752, -22176, 42240, -75504, 128128, -208208, 326144, -495040, 731136, -1054272, 1488384, -2062032, 2808960, -3768688, 4987136, -6517280, 8419840, -10764000, 13628160, -17100720, 21280896, -26279568, 32220160, -39239552
Offset: 0

Views

Author

Klaus Brockhaus, Mar 15 2008

Keywords

Comments

Fourth column of the triangle defined in A123588, seventh column of the triangle defined in A123583.

Crossrefs

Cf. A007318 (Pascal's triangle), A123588, A123583, A040977.

Programs

  • Magma
    [ Binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3: n in [0..28] ];
    
  • Magma
    k:=3; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..28] ];
    
  • Maple
    seq(binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3, n=0..40); # Robert Israel, Oct 26 2017
  • Mathematica
    LinearRecurrence[{-7,-21,-35,-35,-21,-7,-1},{-16,128,-560,1792,-4704,10752,-22176},30] (* Harvey P. Dale, May 27 2017 *)
  • PARI
    for(n=0,28,print1(polcoeff(taylor(16*(x-1)/(x+1)^7,x),n),","));

Formula

a(n) = coefficient of x^6 in the polynomial 1 - T_(n+3)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 16*(x-1)/(x+1)^7.
a(n) = (-1)^(n+1)*16*A040977(n).
a(n) = a(-n-5). - Bruno Berselli, Sep 13 2011

A334009 Triangle read by rows: T(n, k) = binomial(n + k - 1, 2*k - 1) * 4^(k - 1) * n/k, 1 <= k <= n.

Original entry on oeis.org

1, 4, 4, 9, 24, 16, 16, 80, 128, 64, 25, 200, 560, 640, 256, 36, 420, 1792, 3456, 3072, 1024, 49, 784, 4704, 13440, 19712, 14336, 4096, 64, 1344, 10752, 42240, 90112, 106496, 65536, 16384, 81, 2160, 22176, 114048, 329472, 559104, 552960, 294912, 65536, 100
Offset: 1

Views

Author

Michael Somos, Apr 12 2020

Keywords

Comments

Let P(n, x) := Sum_{k=1..n} T(n, k)*x^k. Then P(n, P(m, x)) = P(n*m, x) for all n and m in Z.
The r=4 case of the Logistic Map is 4*x*(1 - x) = -P(1, -x). The r=2 case leads to A193862.

Examples

			First four rows:
.1
.4...4
.9..24..16
16..80.128..64
		

Crossrefs

Programs

  • Mathematica
    T[ n_, k_] := If[k == 0, 0, Binomial[n + k - 1, 2 k - 1] 4^(k - 1) n / k];
  • PARI
    {T(n, k) = if(k == 0, 0, binomial(n + k - 1, 2*k - 1) * 4^(k - 1) * n/k)};

Formula

P(n, x) = sinh(n * arcsinh(sqrt(x)))^2 = (hypergeom([-n, n], [1/2], -x) - 1)/2 are the row polynomials.
G.f.: Sum_{n, m} T(n, k) * x^k * y^n = x * y * (1 + y) / ((1 - y) * (1 - (2 + 4*x)*y + y^2)).
Row sums are A001108.
T(n, k) = (-1)^n * (-4)^(k-1) * A039598(-k - 1, n - 1) for all n in Z if k<0.
T(n, k) = -(-1)^(n+k) * A123588(n,k) if 1 <= k <= n.

A138332 C(n+7, 7)*(n+4)*(-1)^(n+1)*16.

Original entry on oeis.org

-64, 640, -3456, 13440, -42240, 114048, -274560, 604032, -1235520, 2379520, -4356352, 7637760, -12899328, 21085440, -33488640, 51845376, -78450240, 116290944, -169206400, 242070400, -341003520, 473616000, -649284480, 879465600, -1178049600
Offset: 0

Views

Author

Klaus Brockhaus, Mar 15 2008

Keywords

Comments

Fifth column of the triangle defined in A123588, ninth column of the triangle defined in A123583.

Crossrefs

Cf. A007318 (Pascal's triangle), A123588, A123583, A053347.

Programs

  • Magma
    [ Binomial(n+7, 7)*(n+4)*(-1)^(n+1)*16: n in [0..24] ];
    
  • Magma
    k:=4; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..24] ];
    
  • PARI
    for(n=0,24,print1(polcoeff(taylor(64*(x-1)/(x+1)^9,x),n),","));

Formula

a(n) = coefficient of x^8 in the polynomial 1 - T_(n+4)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 64*(x-1)/(x+1)^9.
a(n) = (-1)^(n+1)*64*A053347(n).

A138333 C(n+9, 9)*(n+5)*(-1)^(n+1)*256/5.

Original entry on oeis.org

-256, 3072, -19712, 90112, -329472, 1025024, -2818816, 7028736, -16180736, 34850816, -70946304, 137592832, -255836672, 458422272, -794962432, 1338884096, -2196606720, 3519493120, -5519205120, 8487198720, -12819206400, 19045678080, -27869287680
Offset: 0

Views

Author

Klaus Brockhaus, Mar 15 2008

Keywords

Comments

Sixth column of the triangle defined in A123588, eleventh column of the triangle defined in A123583.

Crossrefs

Cf. A007318 (Pascal's triangle), A123588, A123583, A054334.

Programs

  • Magma
    [ Binomial(n+9, 9)*(n+5)*(-1)^(n+1)*256/5: n in [0..22] ];
    
  • Magma
    k:=5; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..22] ];
    
  • PARI
    for(n=0,22,print1(polcoeff(taylor(256*(x-1)/(x+1)^11,x),n),","));

Formula

a(n) = coefficient of x^10 in the polynomial 1 - T_(n+5)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 256*(x-1)/(x+1)^11.
a(n) = (-1)^(n+1)*256*A054334(n).

A138334 C(n+11, 11)*(n+6)*(-1)^(n+1)*512/3.

Original entry on oeis.org

-1024, 14336, -106496, 559104, -2329600, 8200192, -25346048, 70606848, -180590592, 429977600, -963149824, 2046693376, -4153583616, 8094162944, -15214592000, 27690557440, -48952949760, 84293314560, -141710499840, 233076480000
Offset: 0

Views

Author

Klaus Brockhaus, Mar 15 2008

Keywords

Comments

Seventh column of the triangle defined in A123588, thirteenth column of the triangle defined in A123583.

Crossrefs

Cf. A007318 (Pascal's triangle), A123588, A123583.

Programs

  • Magma
    [ Binomial(n+11, 11)*(n+6)*(-1)^(n+1)*512/3: n in [0..19] ];
    
  • Magma
    k:=6; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..19] ];
    
  • Mathematica
    Table[Binomial[n+11,11](n+6)(-1)^(n+1) 512/3,{n,0,20}] (* Harvey P. Dale, Jun 03 2021 *)
  • PARI
    for(n=0,19,print1(polcoeff(taylor(1024*(x-1)/(x+1)^13,x),n),","));

Formula

a(n) = coefficient of x^12 in the polynomial 1 - T_(n+6)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 1024*(x-1)/(x+1)^13.

A373504 Triangular array: row n gives the coefficients T(n,k) of powers x^(2k) in the series expansion of ((b^n + b^(-n))/2)^2, where b = x + sqrt(x^2 + 1).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 9, 24, 16, 1, 16, 80, 128, 64, 1, 25, 200, 560, 640, 256, 1, 36, 420, 1792, 3456, 3072, 1024, 1, 49, 784, 4704, 13440, 19712, 14336, 4096, 1, 64, 1344, 10752, 42240, 90112, 106496, 65536, 16384, 1, 81, 2160, 22176, 114048, 329472, 559104, 552960, 294912, 65536
Offset: 0

Views

Author

Clark Kimberling, Aug 03 2024

Keywords

Comments

Related to Chebyshev polynomials of the first kind; see A123588.

Examples

			First 8 rows:
  1
  1    1
  1    4     4
  1    9    24     16
  1   16    80    128     64
  1   25   200    560    640    256
  1   36   420   1792   3456   3072   1024
  1   49   784   4704  13440  19612  14336  4096
The 4th polynomial is 1 + 9 x^2 + 24 x^4 + 16 x^6.
		

Crossrefs

Cf. A000012 (col 0), A000290 (col 1), A002415 ((1/4)*col(2)), A112742 (col 2), A000302 (T(n,n)), A123588, A008310.
Row sums give A055997(n+1).
Triangle without column 0 gives A334009.

Programs

  • Maple
    p:= proc(n) option remember; (b-> series(
          ((b^n+b^(-n))/2)^2, x, 2*n+1))(x+sqrt(x^2+1))
        end:
    T:= (n, k)-> coeff(p(n), x, 2*k):
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Aug 03 2024
  • Mathematica
    t[n_] := ((x + Sqrt[x^2 + 1])^n + (x + Sqrt[x^2 + 1])^(-n))/2
    u = Expand[Table[FullSimplify[Expand[t[n]]], {n, 0, 10}]^2]
    v = Column[CoefficientList[u, x^2]] (* array *)
    Flatten[v] (* sequence *)
    T[n_, k_] := If[k==0, 1, 4^(k - 1)*(2*Binomial[n + k, 2*k] - Binomial[n + k -1, 2*k -1])]; Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Aug 11 2024 *)

Formula

T(n, k) = if (k=0) then 1, otherwise 4^(k - 1)*(2*binomial(n + k, 2*k) - binomial(n + k - 1, 2*k - 1)). - Detlef Meya, Aug 11 2024
Showing 1-8 of 8 results.