A123583
Triangle read by rows: T(n, k) is the coefficient of x^k in the polynomial 1 - T_n(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
Original entry on oeis.org
0, 1, 0, -1, 0, 0, 4, 0, -4, 1, 0, -9, 0, 24, 0, -16, 0, 0, 16, 0, -80, 0, 128, 0, -64, 1, 0, -25, 0, 200, 0, -560, 0, 640, 0, -256, 0, 0, 36, 0, -420, 0, 1792, 0, -3456, 0, 3072, 0, -1024, 1, 0, -49, 0, 784, 0, -4704, 0, 13440, 0, -19712, 0, 14336, 0, -4096
Offset: 0
First few rows of the triangle are:
0;
1, 0, -1;
0, 0, 4, 0, -4;
1, 0, -9, 0, 24, 0, -16;
0, 0, 16, 0, -80, 0, 128, 0, -64;
1, 0, -25, 0, 200, 0, -560, 0, 640, 0, -256;
0, 0, 36, 0, -420, 0, 1792, 0, -3456, 0, 3072, 0, -1024;
First few polynomials (p(n, x) = 1 - T_{n}(x)^2) are:
p(0, x) = 0,
p(1, x) = 1 - x^2,
p(2, x) = 0 4*x^2 - 4*x^4,
p(3, x) = 1 - 9*x^2 + 24*x^4 - 16*x^6,
p(4, x) = 0 16*x^2 - 80*x^4 + 128*x^6 - 64*x^8,
p(5, x) = 1 - 25*x^2 + 200*x^4 - 560*x^6 + 640*x^8 - 256*x^10,
p(6, x) = 0 36*x^2 - 420*x^4 + 1792*x^6 - 3456*x^8 + 3072*x^10 - 1024*x^12.
- G. C. Greubel, Rows n = 0..50, flattened
- Gareth Jones and David Singerman, Belyi Functions, Hypermaps and Galois Groups, Bull. London Math. Soc., 28 (1996), 561-590.
- Yuri Matiyasevich, Generalized Chebyshev polynomials.
- G. B. Shabat and I. A. Voevodskii, Drawing curves over number fields, The Grothendieck Festschift, vol. 3, Birkhäuser, 1990, 199-227.
- G. B. Shabat and A. Zvonkin, Plane trees and algebraic numbers, Contemporary Math., 1994, vol. 178, 233-275.
-
[0] cat &cat[ Coefficients(1-ChebyshevT(n)^2): n in [1..8] ];
-
(* First program *)
Table[CoefficientList[1 - ChebyshevT[n, x]^2, x], {n, 0, 10}]//Flatten
(* Second program *)
T[n_, k_]:= T[n, k]= SeriesCoefficient[(1 -ChebyshevT[2*n,x])/2, {x,0,k}];
Table[T[n, k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Jul 02 2021 *)
-
v=[]; for(n=0, 8, v=concat(v, vector(2*n+1, j, polcoeff(1-poltchebi(n)^2, j-1)))); v
-
def T(n): return ( (1 - chebyshev_T(2*n, x))/2 ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 02 2021
A082649
Triangle of coefficients in expansion of sinh^2(n*x) in powers of sinh(x).
Original entry on oeis.org
1, 4, 4, 16, 24, 9, 64, 128, 80, 16, 256, 640, 560, 200, 25, 1024, 3072, 3456, 1792, 420, 36, 4096, 14336, 19712, 13440, 4704, 784, 49, 16384, 65536, 106496, 90112, 42240, 10752, 1344, 64, 65536, 294912, 552960, 559104, 329472, 114048, 22176, 2160, 81, 262144, 1310720, 2785280, 3276800, 2329600
Offset: 1
sinh^2 x = sinh^2 x
sinh^2 2x = 4 sinh^4 x + 4 sinh^2 x
sinh^2 3x = 16 sinh^6 x + 24 sinh^4 x + 9 sinh^2 x
sinh^2 4x = 64 sinh^8 x + 128 sinh^6 x + 80 sinh^4 x + 16 sinh^2 x
sinh^2 5x = 256 sinh^10 x + 640 sinh^8 x + 560 sinh^6 x + 200 sinh^4 x + 25 sinh^2 x
From _Peter Bala_, Feb 02 2016: (Start)
sin^2(x) = 1 - cos^2(x);
sin^2(2*x) = -4*cos^4(x) + 4*cos^2(x);
sin^2(3*x) = 1 - (16*cos^6(x) - 24*cos^4(x) + 9*cos^2(x));
sin^2(4*x) = -64*cos^8(x) + 128*cos^6(x) - 80*cos^4(x) + 16*cos^2(x);
sin^2(5*x) = 1 - (256*cos^10(x) - 640*cos^8(x) + 560*cos^6(x) - 200*cos^4(x) + 25*cos^2(x)). (End)
-
g:= (1+x*y)/((1-x*y)*(1-(4+2*y)*x+x^2*y^2)):
S:= series(g,x,15):
seq(seq(coeff(coeff(S,x,n),y,k),k=0..n),n=0..14); # Robert Israel, Dec 20 2017
-
Table[Reverse[CoefficientList[1/x TrigExpand[Sinh[n ArcSinh[Sqrt[x]]]^2], x]], {n, 7}] // Flatten (* Eric W. Weisstein, Apr 05 2017 *)
Abs[Table[CoefficientList[x^n Piecewise[{{1 - ChebyshevT[n, 1/Sqrt[x]]^2, Mod[n, 2] == 0}, {ChebyshevT[n, 1/Sqrt[x]]^2, Mod[n, 2] == 1}}], x], {n, 10}]] // Flatten (* Eric W. Weisstein, Apr 05 2017 *)
A138331
a(n) = C(n+5, 5)*(n+3)*(-1)^(n+1)*16/3.
Original entry on oeis.org
-16, 128, -560, 1792, -4704, 10752, -22176, 42240, -75504, 128128, -208208, 326144, -495040, 731136, -1054272, 1488384, -2062032, 2808960, -3768688, 4987136, -6517280, 8419840, -10764000, 13628160, -17100720, 21280896, -26279568, 32220160, -39239552
Offset: 0
-
[ Binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3: n in [0..28] ];
-
k:=3; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..28] ];
-
seq(binomial(n+5, 5)*(n+3)*(-1)^(n+1)*16/3, n=0..40); # Robert Israel, Oct 26 2017
-
LinearRecurrence[{-7,-21,-35,-35,-21,-7,-1},{-16,128,-560,1792,-4704,10752,-22176},30] (* Harvey P. Dale, May 27 2017 *)
-
for(n=0,28,print1(polcoeff(taylor(16*(x-1)/(x+1)^7,x),n),","));
A334009
Triangle read by rows: T(n, k) = binomial(n + k - 1, 2*k - 1) * 4^(k - 1) * n/k, 1 <= k <= n.
Original entry on oeis.org
1, 4, 4, 9, 24, 16, 16, 80, 128, 64, 25, 200, 560, 640, 256, 36, 420, 1792, 3456, 3072, 1024, 49, 784, 4704, 13440, 19712, 14336, 4096, 64, 1344, 10752, 42240, 90112, 106496, 65536, 16384, 81, 2160, 22176, 114048, 329472, 559104, 552960, 294912, 65536, 100
Offset: 1
First four rows:
.1
.4...4
.9..24..16
16..80.128..64
-
T[ n_, k_] := If[k == 0, 0, Binomial[n + k - 1, 2 k - 1] 4^(k - 1) n / k];
-
{T(n, k) = if(k == 0, 0, binomial(n + k - 1, 2*k - 1) * 4^(k - 1) * n/k)};
A138332
C(n+7, 7)*(n+4)*(-1)^(n+1)*16.
Original entry on oeis.org
-64, 640, -3456, 13440, -42240, 114048, -274560, 604032, -1235520, 2379520, -4356352, 7637760, -12899328, 21085440, -33488640, 51845376, -78450240, 116290944, -169206400, 242070400, -341003520, 473616000, -649284480, 879465600, -1178049600
Offset: 0
-
[ Binomial(n+7, 7)*(n+4)*(-1)^(n+1)*16: n in [0..24] ];
-
k:=4; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..24] ];
-
for(n=0,24,print1(polcoeff(taylor(64*(x-1)/(x+1)^9,x),n),","));
A138333
C(n+9, 9)*(n+5)*(-1)^(n+1)*256/5.
Original entry on oeis.org
-256, 3072, -19712, 90112, -329472, 1025024, -2818816, 7028736, -16180736, 34850816, -70946304, 137592832, -255836672, 458422272, -794962432, 1338884096, -2196606720, 3519493120, -5519205120, 8487198720, -12819206400, 19045678080, -27869287680
Offset: 0
-
[ Binomial(n+9, 9)*(n+5)*(-1)^(n+1)*256/5: n in [0..22] ];
-
k:=5; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..22] ];
-
for(n=0,22,print1(polcoeff(taylor(256*(x-1)/(x+1)^11,x),n),","));
A138334
C(n+11, 11)*(n+6)*(-1)^(n+1)*512/3.
Original entry on oeis.org
-1024, 14336, -106496, 559104, -2329600, 8200192, -25346048, 70606848, -180590592, 429977600, -963149824, 2046693376, -4153583616, 8094162944, -15214592000, 27690557440, -48952949760, 84293314560, -141710499840, 233076480000
Offset: 0
-
[ Binomial(n+11, 11)*(n+6)*(-1)^(n+1)*512/3: n in [0..19] ];
-
k:=6; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..19] ];
-
Table[Binomial[n+11,11](n+6)(-1)^(n+1) 512/3,{n,0,20}] (* Harvey P. Dale, Jun 03 2021 *)
-
for(n=0,19,print1(polcoeff(taylor(1024*(x-1)/(x+1)^13,x),n),","));
A373504
Triangular array: row n gives the coefficients T(n,k) of powers x^(2k) in the series expansion of ((b^n + b^(-n))/2)^2, where b = x + sqrt(x^2 + 1).
Original entry on oeis.org
1, 1, 1, 1, 4, 4, 1, 9, 24, 16, 1, 16, 80, 128, 64, 1, 25, 200, 560, 640, 256, 1, 36, 420, 1792, 3456, 3072, 1024, 1, 49, 784, 4704, 13440, 19712, 14336, 4096, 1, 64, 1344, 10752, 42240, 90112, 106496, 65536, 16384, 1, 81, 2160, 22176, 114048, 329472, 559104, 552960, 294912, 65536
Offset: 0
First 8 rows:
1
1 1
1 4 4
1 9 24 16
1 16 80 128 64
1 25 200 560 640 256
1 36 420 1792 3456 3072 1024
1 49 784 4704 13440 19612 14336 4096
The 4th polynomial is 1 + 9 x^2 + 24 x^4 + 16 x^6.
Triangle without column 0 gives
A334009.
-
p:= proc(n) option remember; (b-> series(
((b^n+b^(-n))/2)^2, x, 2*n+1))(x+sqrt(x^2+1))
end:
T:= (n, k)-> coeff(p(n), x, 2*k):
seq(seq(T(n,k), k=0..n), n=0..10); # Alois P. Heinz, Aug 03 2024
-
t[n_] := ((x + Sqrt[x^2 + 1])^n + (x + Sqrt[x^2 + 1])^(-n))/2
u = Expand[Table[FullSimplify[Expand[t[n]]], {n, 0, 10}]^2]
v = Column[CoefficientList[u, x^2]] (* array *)
Flatten[v] (* sequence *)
T[n_, k_] := If[k==0, 1, 4^(k - 1)*(2*Binomial[n + k, 2*k] - Binomial[n + k -1, 2*k -1])]; Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Aug 11 2024 *)
Showing 1-8 of 8 results.
Comments