cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A001896 Numerators of cosecant numbers -2*(2^(2*n - 1) - 1)*Bernoulli(2*n); also of Bernoulli(2*n, 1/2) and Bernoulli(2*n, 1/4).

Original entry on oeis.org

1, -1, 7, -31, 127, -2555, 1414477, -57337, 118518239, -5749691557, 91546277357, -1792042792463, 1982765468311237, -286994504449393, 3187598676787461083, -4625594554880206790555, 16555640865486520478399, -22142170099387402072897
Offset: 0

Views

Author

Keywords

Comments

|A001896(n)|*Pi^(2n)/A001897(n) is the value of the multi zeta function z(2,2,...,2) with n 2's, where z(k_l,k_2,...,k_n) = Sum_{i_n >= i_(n-1) >= ... >= i_1 >= 1}1/((i_1)^k_1 (i_2)^k_2 ... (i_n)^k_n). The proof is simple: start with the product expansion sin(Pi x)/(Pi x) = Product_{r>=1}(1-x^2/r^2), take reciprocals, and expand the right side. The coefficient of x^(2n) is seen to be z(2,2,...,2) with n 2's. - David Callan, Aug 27 2014
See A062715 for a method of obtaining the cosecant numbers from the square of Pascal's triangle. - Peter Bala, Jul 18 2013

Examples

			1, -1/12, 7/240, -31/1344, 127/3840, -2555/33792, 1414477/5591040, -57337/49152, 118518239/16711680, ... = a(n)/A033469(n).
Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = a(n)/A001897(n).
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
  • S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
  • N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001897 (denominators), A033469, A036280, A062715, A145901.

Programs

  • Maple
    seq(numer(bernoulli(2*n, 1/2)), n=0..20);
  • Mathematica
    a[n_] := -2*(2^(2*n-1)-1)*BernoulliB[2*n]; Table[a[n], {n, 0, 20}] // Numerator (* Jean-François Alcover, Sep 11 2013 *)
  • PARI
    a(n) = numerator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Mar 01 2015
    
  • Sage
    def A001896_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = C[k-1] / (8*k*(2*k+1))
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*factorial(2*n)).numerator())
        return R
    A001896_list(18) # Peter Luschny, Feb 20 2016

Formula

a(n) = numerator((-Pi^2)^(-n)*Integral_{x=0..1} (log(x/(1-x)))^2*n). - Groux Roland, Nov 10 2009
a(n) = numerator((-1)^(n+1)*(2*Pi)^(-2*n)*(2*n)!*Li_{2*n}(-1)). - Peter Luschny, Jun 29 2012
E.g.f. 2*x*exp(x)/(exp(2*x) - 1) = 1 - 1/3*x^2/2! + 7/15*x^4/4! - 31/21*x^6/6! + .... = Sum_{n >= 0} a(n)/A001897(n)*x^(2*n)/(2*n)!. - Peter Bala, Jul 18 2013
a(n) = numerator((-1)^n*I(n)), where I(n) = 2*Pi*Integral_{z=-oo..oo} (z^n / (exp(-Pi*z) + exp(Pi*z)))^2. - Peter Luschny, Jul 25 2021

A001897 Denominators of cosecant numbers: -2*(2^(2*n-1)-1)*Bernoulli(2*n).

Original entry on oeis.org

1, 3, 15, 21, 15, 33, 1365, 3, 255, 399, 165, 69, 1365, 3, 435, 7161, 255, 3, 959595, 3, 6765, 903, 345, 141, 23205, 33, 795, 399, 435, 177, 28393365, 3, 255, 32361, 15, 2343, 70050435, 3, 15, 1659, 115005, 249, 1702155, 3, 30705, 136059, 705, 3, 2250885, 3, 16665, 2163
Offset: 0

Views

Author

Keywords

Comments

Same as half the denominators of the even-indexed Bernoulli numbers B_{2*n} for n>0, by the von Staudt-Clausen theorem and Fermat's little theorem. - Bernd C. Kellner and Jonathan Sondow, Jan 02 2017 [This is implemented in the second Maple program. - Peter Luschny, Aug 21 2021]

Examples

			Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = A001896/A001897.
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
  • S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
  • N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Denominator(2*(1-2^(2*n-1))*Bernoulli(2*n)): n in [0..55]]; // G. C. Greubel, Apr 06 2019
  • Maple
    b := n -> bernoulli(n)*2^add(i,i=convert(n,base,2));
    a := n -> denom(b(2*n)); # Peter Luschny, May 02 2009
    # Alternative :
    Clausen := proc(n) local i,S; map(i->i+1, numtheory[divisors](n));
    S := select(isprime, %); if S <> {} then mul(i,i=S) else NULL fi end:
    A001897_list := n -> [1,seq(Clausen(2*i)/2,i=1..n-1)];
    A001897_list(52); # Peter Luschny, Oct 03 2011
  • Mathematica
    a[n_] := Denominator[-2*(2^(2*n-1)-1)*BernoulliB[2*n]]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Sep 11 2013 *)
  • PARI
    a(n) = denominator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Apr 06 2019
    
  • Sage
    def A001897(n):
        if n == 0:
            return 1
        M = (d + 1 for d in divisors(2 * n))
        return prod(s for s in M if is_prime(s)) / 2
    [A001897(n) for n in range(55)]  # Peter Luschny, Feb 20 2016
    

Formula

a(0)=1, a(n)=(1/2)*A002445(n) for n>=1. - Joerg Arndt, May 07 2012
a(n) = denominator((2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 29 2012
a(0)=1, a(n) = (1/2)*A027642(2*n) = (3/2)*A277087(n) for n>=1. - Jonathan Sondow, Dec 14 2016
From Peter Luschny, Sep 06 2017: (Start)
a(n) = denominator(r(n)) where r(n) = Sum_{0..n} (-1)^(n-k)*A241171(n, k)/(2*k+1).
a(n) = denominator(bernoulli(2*n, 1/2))/4^n = A033469(n)/4^n. (End)
Apparently a(n) = denominator(Sum_{k=0..2*n-2} (-1)^k*E2(2*n-1, k+1)/binomial(4*n-1, k+1)), where E2(n, k) denotes the second-order Eulerian numbers A340556. - Peter Luschny, Feb 17 2021

A132099 Denominators of Blandin-Diaz compositional Bernoulli numbers (B^Z^2)_1,n.

Original entry on oeis.org

1, 8, 432, 144, 324000, 64800, 16669800
Offset: 0

Views

Author

Jonathan Vos Post, Aug 09 2007

Keywords

Examples

			1, -1/8, 11/432, 1/144, -217/324000, -157/64800, -21503/16669800.
		

Crossrefs

Numerators are A132098.

A132094 Numerators of expansion of e.g.f. x^2/(2*(cos(x)-1)), even powers only.

Original entry on oeis.org

-1, -1, -1, -5, -7, -15, -7601, -91, -3617, -745739, -3317609, -5981591, -5436374093, -213827575, -213745149261, -249859397004145, -238988952277727, -28354566442037, -26315271553053477373, -108409774812137683, -3394075340453838586663, -62324003400640902910331
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2007

Keywords

Comments

Numerators and denominators given only for even n (odd n have numerators = 0).

Examples

			-1, 0, -1/6, 0, -1/10, 0, -5/42, 0, -7/30, 0, -15/22, 0, -7601/2730, 0.
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.

Crossrefs

Denominators are A132095.

Programs

  • Maple
    A132094 := proc(n) add( 2*(-1)^i*x^(2*i)/(2*i+2)!,i=0..n+1) ; numer(coeftayl(-1/%,x=0,n)*n!) ; end: for n from 0 to 46 by 2 do printf("%d, ",A132094(n)) ; od: # R. J. Mathar, Oct 18 2007
  • Mathematica
    A132094[n_] := (s = Sum[ 2*(-1)^i*x^(2*i)/(2*i + 2)!, {i, 0, n + 1}]; Numerator[SeriesCoefficient[-1/s, {x, 0, n}]*n!]);
    Table[A132094[n], {n, 0, 46, 2}] (* Jean-François Alcover, Nov 24 2017, after R. J. Mathar *)
  • PARI
    my(x='x+O('x^50), v=apply(numerator, Vec(serlaplace(x^2/(2*(cos(x)-1)))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Jan 25 2024

Formula

Asymptotic series 2*Psi(1,x) + x*Psi(2,x) ~ Sum_{n>=1} (-1)^n* a(n)/(A132095(n)*x^(2*n-1)) as x -> oo. - Robert Israel, May 27 2015

Extensions

More terms from R. J. Mathar, Oct 18 2007
Meaningful name from Joerg Arndt, Jan 25 2024

A132095 Denominators of expansion of e.g.f. x^2/(2*(cos(x)-1)), even powers only.

Original entry on oeis.org

1, 6, 10, 42, 30, 22, 2730, 6, 34, 798, 330, 46, 2730, 6, 290, 14322, 510, 2, 54834, 6, 4510, 1806, 690, 94, 46410, 66, 530, 798, 174, 118, 56786730, 6, 170, 64722, 30, 1562, 140100870, 6, 2, 474, 230010, 166, 3404310, 6, 20470, 272118, 1410, 2, 900354, 6
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2007

Keywords

Comments

Numerators and denominators given only for even n (odd n have numerators = 0).

Examples

			-1, 0, -1/6, 0, -1/10, 0, -5/42, 0, -7/30, 0, -15/22, 0, -7601/2730, 0.
		

References

  • Hector Blandin and Rafael Diaz, Compositional Bernoulli numbers , Afr. Diaspora J. Math., Volume 7, Number 2 (2008).
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.

Crossrefs

Numerators are A132094.

Programs

  • Maple
    A132095 := proc(n) add( 2*(-1)^i*x^(2*i)/(2*i+2)!,i=0..n/2+1) ; denom(coeftayl(-1/%,x=0,n)*n!) ; end: for n from 0 to 46 by 2 do printf("%d, ",A132095(n)) ; od: # R. J. Mathar, Oct 18 2007
  • Mathematica
    A132095[n_] := (s = Sum[ 2*(-1)^i*x^(2*i)/(2*i + 2)!, {i, 0, n/2 + 1}] ; Denominator[SeriesCoefficient[-1/s, {x, 0, n}]*n!]) ;
    Table[ A132095[n], {n, 0, 100, 2}] (* Jean-François Alcover, Nov 24 2017, after R. J. Mathar *)
  • PARI
    my(x='x+O('x^100), v=apply(denominator, Vec(serlaplace(x^2/(2*(cos(x)-1)))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Jan 25 2024

Formula

Asymptotic series 2*Psi(1,x) + x*Psi(2,x) ~ Sum(n>=1, (-1)^n* A132094(n)/(a(n)*x^(2*n-1)) as x -> infinity. - Robert Israel, May 27 2015

Extensions

More terms from R. J. Mathar, Oct 18 2007 and Oct 20 2009
Meaningful name from Joerg Arndt, Jan 25 2024

A132097 Denominators of Blandin-Diaz compositional Bernoulli numbers (B^Z)_1,n.

Original entry on oeis.org

1, 4, 72, 96, 21600, 640, 5080320, 580608, 326592000, 20736000, 2529128448, 1094860800, 1298164008960000, 399435079680000, 11298306539520000, 231760134144000, 48978158848819200000, 768284844687360000, 81541143706048266240000, 1009797445276139520000, 467359502609929273344000000
Offset: 0

Views

Author

Jonathan Vos Post, Aug 09 2007

Keywords

Examples

			1, -1/4, 1/72, 1/96, 61/21600, -1/640, -12491/5080320, -479/680608.
		

Crossrefs

Numerators are A132096.

Programs

  • Mathematica
    nn = 21; A = Inverse[Table[Table[If[n >= k, Binomial[n - 1, k - 1]/(n - k + 1)^2, 0], {k, 1, nn}], {n, 1, nn}]]; Denominator[A[[All, 1]]] (* Mats Granvik, Feb 03 2018 *)

Formula

a(n) = denominator(f(n)), where f(0) = 1, f(n) = -Sum_{k=0..n-1} f(k) * binomial(n,k) / (n-k+1)^2. - Daniel Suteu, Feb 23 2018

A132098 Numerators of Blandin-Diaz compositional Bernoulli numbers (B^Z^2)_1,n.

Original entry on oeis.org

1, -1, 11, 1, -217, -157, -21503
Offset: 0

Views

Author

Jonathan Vos Post, Aug 09 2007

Keywords

Examples

			1, -1/8, 11/432, 1/144, -217/324000, -157/64800, -21503/16669800.
		

Crossrefs

Denominators are A132099.

A006568 Denominators of generalized Bernoulli numbers.

Original entry on oeis.org

1, 3, 18, 90, 270, 1134, 5670, 2430, 7290, 133650, 112266, 1990170, 9950850, 2296350, 984150, 117113850, 351341550, 33657930, 21597171750, 3410079750, 572893398, 33613643250, 834229509750, 108812544750, 544062723750, 18280507518, 105464466450, 18690647109750
Offset: 0

Views

Author

Keywords

Comments

Triangle A209518 * [1, -1/3, 1/18, 1/90, ...] = [1, 0, 0, 0, 0, ...]. - Gary W. Adamson, Mar 09 2012

Examples

			a(0), a(1), a(2), ... = (1, -1/3, 1/18, ...) = leftmost column of the inverse of the 3 X 3 matrix [1; 1, 3; 1, 4, 6; ...].
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    rows = 28; M = Table[If[n-1 <= k <= n, 0, Binomial[n, k]], {n, 2, rows+1}, {k, 0, rows-1}] // Inverse;
    M[[All, 1]] // Denominator (* Jean-François Alcover, Jul 14 2018 *)
  • Sage
    def A006568_list(len):
        f, R, C = 1, [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            f *= n
            for k in range(n, 0, -1):
                C[k] = C[k-1] / (k+2)
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*f).denominator())
        return R
    print(A006568_list(28)) # Peter Luschny, Feb 20 2016

Formula

Given a variant of Pascal's triangle (cf. A209518) in which the two rightmost diagonals are deleted, invert the triangle and extract the leftmost column. Considered as a sequence, we obtain A006568/A006569: (1, -1/3, 1/18, 1/90, ...). - Gary W. Adamson, Mar 09 2012

Extensions

More terms from Peter Luschny, Feb 20 2016

A006569 Numerators of generalized Bernoulli numbers.

Original entry on oeis.org

1, -1, 1, 1, -1, -5, -1, 7, 13, -307, -479, 1837, 100921, 15587, -23737, -5729723, 14731223, 9129833, 2722952839, -4700745901, -1556262845, 190717213397, 24684889339847, -50242799489, -148437433077277, -8592042383621, 221844330989749, 176585172615885307, -9245931549625447
Offset: 0

Views

Author

Keywords

References

  • F. T. Howard, A sequence of numbers related to the exponential function, Duke Math. J., 34 (1967), 599-615.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    eq:=n->bernoulli(n+1)=a[n+1]-sum(binomial(n+1,r)*bernoulli(r)*a[n+2-r],r=1..n+1): a[0]:=1:for n from 0 to 28 do a[n+1]:=solve(eq(n),a[n+1]) od: seq(numer(a[n]),n=0..29); # Emeric Deutsch, Jan 23 2005
  • Mathematica
    rows = 29; M = Table[If[n-1 <= k <= n, 0, Binomial[n, k]], {n, 2, rows+1}, {k, 0, rows-1}] // Inverse;
    M[[All, 1]] // Numerator (* Jean-François Alcover, Jul 14 2018 *)
  • Sage
    def A006569_list(len):
        f, R, C = 1, [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            f *= n
            for k in range(n, 0, -1):
                C[k] = C[k-1] / (k+2)
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*f).numerator())
        return R
    print(A006569_list(29)) # Peter Luschny, Feb 20 2016

Formula

Recurrence relation: Bernoulli(n+1) = a(n+1) - Sum_{r=1..n+1} binomial(n+1, r)*Bernoulli(r)*a(n+2-r); a(0)=1 (p. 603 of the Howard reference). - Emeric Deutsch, Jan 23 2005
E.g.f. for fractions: x^2/2 / (e^x-1-x). - Franklin T. Adams-Watters, Nov 04 2009

Extensions

More terms from Emeric Deutsch, Jan 23 2005

A132093 Denominators of Blandin-Diaz compositional Bernoulli numbers (B^sin)_3,n.

Original entry on oeis.org

1, 10, 350, 1050, 57750, 250250, 2388750, 2231250, 1088106250, 137156250, 105761906250, 2289218750, 8842968750, 51289218750, 45049030468750, 3563716406250, 1099667378906250, 4714260332031250, 14142780996093750
Offset: 0

Views

Author

Jonathan Vos Post, Aug 09 2007

Keywords

Comments

Numerators and denominators given only for even n (odd n have numerators = 0).

Examples

			-1, 0, -1/10, 0, -11/350, 0, -17,1050, 0, -563/57750, 0, -381/250250, 0.
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.

Crossrefs

Numerators are A132092.

Programs

  • Mathematica
    m = 20;
    ((x^3)/3!)/(Sin[x]-x) + O[x]^(2m) // CoefficientList[#, x]& // #*Range[0, 2m-2]!& // #[[;; ;; 2]]& // Denominator (* Jean-François Alcover, Mar 23 2020 *)
  • PARI
    my(N=40, x='x+O('x^N), v=apply(denominator, Vec(serlaplace(x^3/(6*(sin(x)-x)))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Jan 24 2024

Formula

((x^3)/3!)/(sin(x)-x) = Sum_{n>=0} (B^sin)_3,n ((x^n)/n!).

Extensions

More terms from R. J. Mathar, May 25 2008
Offset corrected as suggested by Andrew Howroyd. - N. J. A. Sloane, Sep 22 2024
Showing 1-10 of 17 results. Next