Original entry on oeis.org
1, 2, 10, 168, 4290, 136136, 4938024, 196125600, 8318177010, 370784099400, 17184867259560, 821870841735840, 40334204896057800, 2022686389717666848, 103312949950998743200, 5360873347802169267840, 282015983963437605168210
Offset: 0
-
a[n_]:= If[n==0, 1, Binomial[2*n, n]*Binomial[4*n-2, 2*n-1]/(2*Binomial[2*n,2])];
Table[a[n], {n, 0, 20}] (* G. C. Greubel, Dec 14 2021 *)
-
a(n) = if (n, 2*(4*n-3)!/(n!^2*(2*n-1)!), 1); \\ Michel Marcus, Mar 27 2016
-
b=binomial
def a(n): return 1 if (n==0) else b(2*n, n)*b(4*n-2, 2*n-1)/(2*b(2*n,2))
[a(n) for n in (0..20)] # G. C. Greubel, Dec 14 2021
A006331
a(n) = n*(n+1)*(2*n+1)/3.
Original entry on oeis.org
0, 2, 10, 28, 60, 110, 182, 280, 408, 570, 770, 1012, 1300, 1638, 2030, 2480, 2992, 3570, 4218, 4940, 5740, 6622, 7590, 8648, 9800, 11050, 12402, 13860, 15428, 17110, 18910, 20832, 22880, 25058, 27370, 29820, 32412, 35150, 38038, 41080, 44280
Offset: 0
For n=2, a(2)=10 since there are 10 non-monotonic functions f from {0,1,2} to {0,1,2}, namely, functions f = <f(1),f(2),f(3)> given by <0,1,0>, <0,2,0>, <0,2,1>, <1,0,1>, <1,0,2>, <1,2,0>, <1,2,1>, <2,0,1>, <2,0,2>, and <2,1,2>. - _Dennis P. Walsh_, Apr 25 2011
Let n=4, 2*n+1 = 9. Since 9 = 1+8 = 3+6 = 5+4 = 7+2, a(4) = 1*8 + 3*6 + 5*4 + 7*2 = 60. - _Vladimir Shevelev_, May 11 2012
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Rowan Beckworth, Basic atomic information.
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.
- Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 25.
- N. S. S. Gu, H. Prodinger and S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat., Vol. 31 (2010), pp. 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2 at n=3.
- JBMO 2025, 29th Junior Balkan Mathematical Olympiad, Problem 4, author: Boris Mihov
- Germain Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, Vol. 6 (1965), circa p. 82.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Dennis Walsh, Notes on finite monotonic and non-monotonic functions.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a006331 n = sum $ zipWith (*) [2*n-1, 2*n-3 .. 1] [2, 4 ..]
-- Reinhard Zumkeller, Feb 11 2012
-
[n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
-
A006331 := proc(n)
n*(n+1)*(2*n+1)/3 ;
end proc:
seq(A006331(n),n=0..80) ; # R. J. Mathar, Sep 27 2013
-
Table[n(n+1)(2n+1)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,10,28},50] (* Harvey P. Dale, Apr 12 2013 *)
-
a(n)=if(n<0,0,n*(n+1)*(2*n+1)/3)
A006332
From the enumeration of corners.
Original entry on oeis.org
0, 2, 28, 168, 660, 2002, 5096, 11424, 23256, 43890, 77924, 131560, 212940, 332514, 503440, 742016, 1068144, 1505826, 2083692, 2835560, 3801028, 5026098, 6563832, 8475040, 10829000, 13704210, 17189172, 21383208, 26397308, 32355010, 39393312, 47663616, 57332704
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Germain Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[Binomial(n+2, 3)*Binomial(2*n+3, 3)/5: n in [0..30]]; // G. C. Greubel, Dec 14 2021
-
A006332:=-2*(1+z)*(z**2+6*z+1)/(z-1)**7; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[(n(1+n)^2(2+n)(1+2n)(3+2n))/90, {n, 0, 30}] (* or *)
{0}~Join~CoefficientList[Series[2(x+1)(x^2 +6x +1)/(1-x)^7, {x, 0, 29}], x] (* Michael De Vlieger, Mar 26 2016 *)
-
my(x='x+O('x^99)); concat(0, Vec(2*(x+1)*(x^2+6*x+1)/(1-x)^7)) \\ Altug Alkan, Mar 26 2016
-
[binomial(n+2, 3)*binomial(2*n+3, 3)/5 for n in (0..30)] # G. C. Greubel, Dec 14 2021
A006333
From the enumeration of corners.
Original entry on oeis.org
0, 2, 60, 660, 4290, 20020, 74256, 232560, 639540, 1586310, 3617900, 7696260, 15438150, 29451240, 53796160, 94607040, 160908264, 265670730, 427156860, 670609940, 1030350090, 1552346268, 2297341200, 3344614000, 4796473500
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Matthew House, Table of n, a(n) for n = 0..10000
- G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
Abs@ With[{n = 4}, Table[(2 (-1)^(n + k) (n + k - 1)! (2 n + 2 k - 3)!)/(n! k! (2 n - 1)! (2 k - 1)!), {k, 0, 24}]] (* or *)
{0}~Join~CoefficientList[Series[2 (1 + 20 x + 75 x^2 + 75 x^3 + 20 x^4 + x^5)/(1 - x)^10, {x, 0, 23}], x] (* Michael De Vlieger, Mar 26 2016 *)
LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,2,60,660,4290,20020,74256,232560,639540,1586310},30] (* Harvey P. Dale, Jan 01 2017 *)
-
a(n) = (n*(1 + n)^2*(2 + n)^2*(3 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n))/7560 \\ Charles R Greathouse IV, Jul 28 2015
-
x='x+O('x^99); concat(0, Vec(2*(1+20*x+75*x^2+75*x^3+20*x^4+x^5)/(1-x)^10)) \\ Altug Alkan, Mar 26 2016
A006334
From the enumeration of corners.
Original entry on oeis.org
0, 2, 110, 2002, 20020, 136136, 705432, 2984520, 10786908, 34370050, 98768670, 260390130, 638110200, 1468635168, 3200871520, 6650874912, 13248113736, 25415833170, 47143878782, 84832157410, 148507792972, 253549890440, 423093671000, 691331713800, 1107985378500
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
Abs@ With[{n = 5}, Table[(2 (-1)^(n + k) (n + k - 1)! (2 n + 2 k - 3)!)/(n! k! (2 n - 1)! (2 k - 1)!), {k, 0, 24}]] (* Michael De Vlieger, Mar 26 2016 *)
LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{0,2,110,2002,20020,136136,705432,2984520,10786908,34370050,98768670,260390130,638110200},30] (* Harvey P. Dale, Apr 21 2016 *)
Showing 1-5 of 5 results.
Comments