cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A134083 A007318 * A134082.

Original entry on oeis.org

1, 3, 1, 5, 6, 1, 7, 15, 9, 1, 9, 28, 30, 12, 1, 11, 45, 70, 50, 15, 1, 13, 66, 135, 140, 75, 18, 1, 15, 91, 231, 315, 245, 105, 21, 1, 17, 120, 364, 616, 630, 392, 140, 24, 1, 19, 153, 540, 1092, 1386, 1134, 588, 180, 27, 1
Offset: 0

Views

Author

Gary W. Adamson, Oct 07 2007

Keywords

Comments

Row sums = A001787: (1, 4, 12, 32, 80, 192, ...).
A134083 * [1,2,3,...] = A084850: (1, 5, 20, 68, 208, 592, ...).

Examples

			First few rows of the triangle:
   1;
   3,  1;
   5,  6,   1;
   7, 15,   9,   1;
   9, 28,  30,  12,   1;
  11, 45,  70,  50,  15,   1;
  13, 66, 135, 140,  75,  18,  1;
  15, 91, 231, 315, 245, 105, 21, 1;
  ...
		

Crossrefs

Formula

Binomial transform of A134082
From formalism in A132382, e.g.f. = I_o[2*(u*x)^(1/2)] exp(x)(1+2x) where I_o is the zeroth modified Bessel function of the first kind, i.e., I_o[2*(u*x)^(1/2)] = Sum_{j>=0} u^j/j! * x^j/j!. - Tom Copeland, Dec 07 2007
Row polynomial e.g.f.: exp(x*y) * exp(x) * (1+2x). - Tom Copeland, Dec 03 2013

A134199 A002260 + A134082 - I as infinite lower triangular matrices; I = Identity matrix.

Original entry on oeis.org

1, 3, 2, 1, 6, 3, 1, 2, 9, 4, 1, 2, 3, 12, 5, 1, 2, 3, 4, 15, 6, 1, 2, 3, 4, 5, 18, 7, 1, 2, 3, 4, 5, 6, 21, 8, 1, 2, 3, 4, 5, 6, 7, 24, 9, 1, 2, 3, 4, 5, 6, 7, 8, 27, 10
Offset: 0

Views

Author

Gary W. Adamson, Oct 13 2007

Keywords

Comments

Row sums = A052905: (1, 5, 10, 16, 23, 31, 40, ...).

Examples

			First few rows of the triangle:
  1;
  3,  2;
  1,  6,  3;
  1,  2,  9,  4;
  1,  2,  3, 12,  5;
  1,  2,  3,  4, 15,  6;
  1,  2,  3,  4,  5, 18,  7;
  ...
		

Crossrefs

A134225 A007436 + A134082 - A000012 as infinite lower triangular matrices; where A000012 = (1; 1,1; 1,1,1; ...).

Original entry on oeis.org

1, 3, 1, 2, 5, 1, 3, 2, 7, 1, 4, 3, 2, 9, 1, 5, 4, 3, 2, 11, 1, 6, 5, 4, 3, 2, 13, 1, 7, 6, 5, 4, 3, 2, 15, 1, 8, 7, 6, 5, 4, 3, 2, 17, 1, 9, 8, 7, 6, 5, 4, 3, 2, 19, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 14 2007

Keywords

Comments

Row sums = A034856: (1, 4, 8, 13, 19, 26, ...).

Examples

			First few rows of the triangle:
  1;
  3, 1;
  2, 5, 1;
  3, 2, 7, 1;
  4, 3, 2, 9,  1;
  5, 4, 3, 2, 11,  1;
  6, 5, 4, 3,  2, 13,  1;
  7, 6, 5, 4,  3,  2, 15, 1;
  ...
		

Crossrefs

A134233 (A007318 * A134082 + A134082 * A007318) - A007318 as infinite lower triangular matrices.

Original entry on oeis.org

1, 5, 1, 9, 10, 1, 13, 27, 15, 1, 17, 52, 54, 20, 1, 21, 85, 130, 90, 25, 25, 126, 255, 260, 135, 30, 1, 29, 175, 441, 595, 455, 189, 35, 33, 232, 700, 1176, 1190, 728, 252, 40, 1, 37, 297, 1044, 2100, 2646, 2142, 1092, 324, 45, 1
Offset: 0

Views

Author

Gary W. Adamson, Oct 14 2007

Keywords

Comments

Row sums = A014480: (1, 6, 20, 56, 144, 352, ...).
Also 2*A134083-A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 15 2007

Examples

			First few rows of the triangle:
   1;
   5,   1;
   9,  10,   1;
  13,  27,  15,   1;
  17,  52,  54,  20,   1;
  21,  85, 130,  90,  25,   1;
  ...
		

Crossrefs

A134224 A004736 + A134082 - I as infinite lower triangular matrices; I = Identity matrix.

Original entry on oeis.org

1, 4, 1, 3, 6, 1, 4, 3, 8, 1, 5, 4, 3, 10, 1, 6, 5, 4, 3, 12, 1, 7, 6, 5, 4, 3, 14, 1, 8, 7, 6, 5, 4, 3, 16, 1, 9, 8, 7, 6, 5, 4, 3, 18, 1, 10, 9, 8, 7, 6, 5, 4, 3, 20, 1
Offset: 0

Views

Author

Gary W. Adamson, Oct 14 2007

Keywords

Comments

Row sums = A052905: (1, 5, 10, 16, 23, 31, 40, ...).

Examples

			First few rows of the triangle:
  1;
  4,  1;
  3,  6,  1;
  4,  3,  8,  1;
  5,  4,  3, 10,  1;
  6,  5,  4,  3, 12,  1;
  7,  6,  5,  4,  3, 14,  1;
  ...
		

Crossrefs

A084849 a(n) = 1 + n + 2*n^2.

Original entry on oeis.org

1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, 301, 352, 407, 466, 529, 596, 667, 742, 821, 904, 991, 1082, 1177, 1276, 1379, 1486, 1597, 1712, 1831, 1954, 2081, 2212, 2347, 2486, 2629, 2776, 2927, 3082, 3241, 3404, 3571, 3742, 3917, 4096, 4279, 4466
Offset: 0

Views

Author

Paul Barry, Jun 09 2003

Keywords

Comments

Equals (1, 2, 3, ...) convolved with (1, 2, 4, 4, 4, ...). a(3) = 22 = (1, 2, 3, 4) dot (4, 4, 2, 1) = (4 + 8 + 6 + 4). - Gary W. Adamson, May 01 2009
a(n) is also the number of ways to place 2 nonattacking bishops on a 2 X (n+1) board. - Vaclav Kotesovec, Jan 29 2010
Partial sums are A174723. - Wesley Ivan Hurt, Apr 16 2016
Also the number of irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Aug 09 2017

Crossrefs

Programs

Formula

a(n) = A058331(n) + A000027(n).
G.f.: (1 + x + 2*x^2)/(1 - x)^3.
a(n) = A014105(n) + 1; A100035(a(n)) = 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = ceiling((2*n + 1)^2/2) - n = A001844(n) - n. - Paul Barry, Jul 16 2006
From Gary W. Adamson, Oct 07 2007: (Start)
Row sums of triangle A131901.
(a(n): n >= 0) is the binomial transform of (1, 3, 4, 0, 0, 0, ...). (End)
Equals A134082 * [1,2,3,...]. -
a(n) = (1 + A000217(2*n-1) + A000217(2*n+1))/2. - Enrique Pérez Herrero, Apr 02 2010
a(n) = (A177342(n+1) - A177342(n))/2, with n > 0. - Bruno Berselli, May 19 2010
a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0, with n > 2. - Bruno Berselli, May 24 2010
a(n) = 4*n + a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Aug 08 2010
With an offset of 1, the polynomial a(t-1) = 2*t^2 - 3*t + 2 is the Alexander polynomial (with negative powers cleared) of the 3-twist knot. The associated Seifert matrix S is [[-1,-1], [0,-2]]. a(n-1) = det(transpose(S) - n*S). Cf. A060884. - Peter Bala, Mar 14 2012
E.g.f.: (1 + 3*x + 2*x^2)*exp(x). - Ilya Gutkovskiy, Apr 16 2016

A132382 Lower triangular array T(n,k) generator for group of arrays related to A001147 and A102625.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, -3, -3, -3, 1, -15, -12, -6, -4, 1, -105, -75, -30, -10, -5, 1, -945, -630, -225, -60, -15, -6, 1, -10395, -6615, -2205, -525, -105, -21, -7, 1, -135135, -83160, -26460, -5880, -1050, -168, -28, -8, 1, -2027025, -1216215, -374220, -79380, -13230, -1890, -252, -36, -9, 1
Offset: 0

Views

Author

Tom Copeland, Nov 11 2007, Nov 12 2007, Nov 19 2007, Dec 04 2007, Dec 06 2007

Keywords

Comments

Let b(n) = LPT[ A001147 ] = -A001147(n-1) for n > 0 and 1 for n=0, where LPT represents the action of the list partition transform described in A133314.
Then T(n,k) = binomial(n,k) * b(n-k) .
Form the matrix of polynomials TB(n,k,t) = T(n,k) * t^(n-k) = binomial(n,k) * b(n-k) * t^(n-k) = binomial(n,k) * Pb(n-k,t),
beginning as
1;
-1, 1;
-1*t, -2, 1;
-3*t^2, -3*t, -3, 1;
-15*t^3, -12*t^2, -6*t, -4, 1;
-105*t^4, -75*t^3, -30*t^2, -10*t, -5, 1;
Let Pc(n,t) = LPT(Pb(.,t)).
Then [TB(t)]^(-1) = TC(t) = [ binomial(n,k) * Pc(n-k,t) ] = LPT(TB),
whose first column is
Pc(0,t) = 1
Pc(1,t) = 1
Pc(2,t) = 2 + t
Pc(3,t) = 6 + 6*t + 3*t^2
Pc(4,t) = 24 + 36*t + 30*t^2 + 15*t^3
Pc(5,t) = 120 + 240*t + 270*t^2 + 210*t^3 + 105*t^4.
The coefficients of these polynomials are given by the reverse of A102625 with the highest order coefficients given by A001147 with an additional leading 1.
Note this is not the complete matrix TC. The complete matrix is formed by multiplying along the diagonal of the lower triangular Pascal matrix by these polynomials, embedding trees of coefficients in the matrix.
exp[Pb(.,t)*x] = 1 + [(1-2t*x)^(1/2) - 1] / (t-0) = [1 + a finite diff. of [(1-2t*x)^(1/2)] with step t] = e.g.f. of the first column of TB.
exp[Pc(.,t)*x] = 1 / { 1 + [(1-2t*x)^(1/2) - 1] / t } = 1 / exp[Pb(.,t)*x) = e.g.f. of the first column of TC.
TB(t) and TC(t), being inverse to each other, are the generators of an Abelian group.
TB(0) and TC(0) are generators for a subgroup representing the iterated Laguerre operator described in A132013 and A132014.
Let sb(t,m) and sc(t,m) be the associated sequences under the LPT to TB(t)^m = B(t,m) and TC(t)^m = C(t,m).
Let Esb(t,m) and Esc(t,m) be e.g.f.'s for sb(t,m) and sc(t,m), rB(t,m) and rC(t,m) be the row sums of B(t,m) and C(t,m) and aB(t,m) and aC(t,m) be the alternating row sums.
Then B(t,m) is the inverse of C(t,m), Esb(t,m) is the reciprocal of Esc(t,m) and sb(t,m) and sc(t,m) form a reciprocal pair under the LPT. Similar relations hold among the row sums and the alternating sign row sums and associated quantities.
All the group members have the form B(t,m) * C(u,p) = TB(t)^m * TC(u)^p = [ binomial(n,k) * s(n-k) ]
with associated e.g.f. Es(x) = exp[m * Pb(.,t) * x] * exp[p * Pc(.,u) * x] for the first column of the matrix, with terms s(n), so group multiplication is isomorphic to matrix multiplication and to multiplication of the e.g.f.'s for the associated sequences (see examples).
These results can be extended to other groups of integer-valued arrays by replacing the 2 by any natural number in the expression for exp[Pb(.,t)*x].
More generally,
[ G.f. for M = Product_{i=0..j} B[s(i),m(i)] * C[t(i),n(i)] ]
= exp(u*x) * Product_{i=0..j} { exp[m(i) * Pb(.,s(i)) * x] * exp[n(i) * Pc(.,t(i)) * x] }
= exp(u*x) * Product_{i=0..j} { 1 + [ (1 - 2*s(i)*x)^(1/2) - 1 ] / s(i) }^m(i) / { 1 + [ (1 - 2*t(i)*x)^(1/2) - 1 ] / t(i) }^n(i)
= exp(u*x) * H(x)
[ E.g.f. for M ] = I_o[2*(u*x)^(1/2)] * H(x).
M is an integer-valued matrix for m(i) and n(i) positive integers and s(i) and t(i) integers. To invert M, change B to C in Product for M.
H(x) is the e.g.f. for the first column of M and diagonally multiplying the Pascal matrix by the terms of this column generates M. See examples.
The G.f. for M, i.e., the e.g.f. for the row polynomials of M, implies that the row polynomials form an Appell sequence (see Wikipedia and Mathworld). - Tom Copeland, Dec 03 2013

Examples

			Some group members and associated arrays are
(t,m) :: Array :: Asc. Matrix :: Asc. Sequence :: E.g.f. for sequence
..............................................................................
(0,1).::.B..::..A132013.::.(1,-1,0,0,0,0,...).....::.s(x).=.1-x
(0,1).::.C..::..A094587.::.(0!,1!,2!,3!,...)......::.1./.s(x)
(0,1).::.rB.::.~A055137.::.(1,0,-1,-2,-3,-4,...)..::.exp(x).*.s(x)
(0,1).::.rC.::....-.....::..A000522...............::.exp(x)./.s(x)
(0,1).::.aB.::....-.....::.(1,-2,3,-4,5,-6,...)...::.exp(-x).*.s(x)
(0,1).::.aC.::..A008290.::..A000166...............::.exp(-x)./.s(x)
..............................................................................
(0,2).::.B..::..A132014.::.(1,-2,2,0,0,0,0...)....::.s(x).=.(1-x)^2
(0,2).::.C..::..A132159.::.(1!,2!,3!,4!,...)......::..1./.s(x).
(0,2).::.rB.::...-......::.(1,-1,-1,1,5,11,19,29,)::.exp(x).*.s(x).
(0,2).::.rC.::...-......::..A001339...............::.exp(x)./.s(x).
(0,2).::.aB.::...-......::.(-1)^n.A002061(n+1)....::.exp(-x).*.s(x).
(0,2).::.aC.::...-......::..A000255...............::.exp(-x)./.s(x).
..............................................................................
(1,1).::.B..::..T.......::.(1,-A001147(n-1))......::.s(x).=.(1-2x)^(1/2)
(1,1).::.C..::.~A113278.::..A001147...............::.1./.s(x)...
(1,1).::.rB.::...-......::..A055142...............::.exp(x).*.s(x).
(1,1).::.rC.::...-......::..A084262...............::.exp(x)./.s(x).
(1,1).::.aB.::...-......::.(1,-2,2,-4,-4,-56,...).::.exp(-x).*.s(x).
(1,1).::.aC.::...-......::..A053871...............::.exp(-x)./.s(x).
..............................................................................
(2,1).::.B..::...-......::.(1,-A001813)...........::.s=[1+(1-4x)^(1/2)]/2....
(2,1).::.C..::...-......::..A001761...............::.1./.s(x)..
(2,1).::.rB.::...-......::.(1,0,-3,-20,-183,...)..::.exp(x).*.s(x)..
(2,1).::.rC.::...-......::.(1,2,7,46,485,...).....::.exp(x)./.s(x).
(2,1).::.aB.::...-......::.(1,-2,1,-10,-79,...)...::.exp(-x).*.s(x).
(2,1).::.aC.::...-......::.(1,0,3,20,237,...).....::.exp(-x)./.s(x)
..............................................................................
(1,2).::.B..::.~A134082.::.(1,-2,0,0,0,0,...).....::.s(x).=.1.-.2x
(1,2).::.C..::....-.....::..A000165...............::.1./.s(x)..
(1,2).::.rB.::....-.....::.(1,-1,-3,-5,-7,-9,...).::.exp(x).*.s(x).
(1,2).::.rC.::....-.....::..A010844...............::.exp(x)./.s(x)..
(1,2).::.aB.::....-.....::.(1,-3,5,-7,9,-11,...)..::.exp(-x).*.s(x).
(1,2).::.aC.::....-.....::..A000354...............::.exp(-x)./.s(x).
..............................................................................
(The tilde indicates the match is not exact--specifically, there are differences in signs from the true matrices.)
Note the row sums correspond to binomial transforms of s(x) and the alternating row sums, to inverse binomial transforms, or, finite differences.
Some additional examples:
C(1,2)*B(0,1) = B(1,-2)*C(0,-1) = [ binomial(n,k)*A002866(n-k) ] with asc. e.g.f. (1-x) / (1-2x).
B(1,2)*C(0,1) = C(1,-2)*B(0,-1) = 2I - A094587 with asc. e.g.f. (1-2x) / (1-x).
		

Formula

[G.f. for TB(n,k,t)] = GTB(u,x,t) = exp(u*x) * { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } = exp[(u+Pb(.,t))*x] where TB(n,k,t) = (D_x)^n (D_u)^k /k! GTB(u,x,t) eval. at u=x=0.
[G.f. for TC(n,k,t)] = GTC(u,x,t) = exp(u*x) / { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } = exp[(u+Pc(.,t))*x] where TC(n,k,t) = (D_x)^n (D_u)^k /k! GTC(u,x,t) eval. at u=x=0.
[E.g.f. for TB(n,k,t)] = I_o[2*(u*x)^(1/2)] * { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } and
[E.g.f. for TC(n,k,t)] = I_o[2*(u*x)^(1/2)] / { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t }
where I_o is the zeroth modified Bessel function of the first kind, i.e.,
I_o[2*(u*x)^(1/2)] = Sum_{j>=0} (u^j/j!) * (x^j/j!).
So [e.g.f. for TB(n,k)] = I_o[2*(u*x)^(1/2)] * (1 - 2x)^(1/2).

Extensions

More terms from Tom Copeland, Dec 05 2007

A134226 Triangle T(n, k) = 3*n - 4 if k = n-1 otherwise k, read by rows.

Original entry on oeis.org

1, 2, 2, 1, 5, 3, 1, 2, 8, 4, 1, 2, 3, 11, 5, 1, 2, 3, 4, 14, 6, 1, 2, 3, 4, 5, 17, 7, 1, 2, 3, 4, 5, 6, 20, 8, 1, 2, 3, 4, 5, 6, 7, 23, 9, 1, 2, 3, 4, 5, 6, 7, 8, 26, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 29, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 32, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 35, 13
Offset: 1

Views

Author

Gary W. Adamson, Oct 14 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  2, 2;
  1, 5, 3;
  1, 2, 8,  4;
  1, 2, 3, 11,  5;
  1, 2, 3,  4, 14,  6;
  1, 2, 3,  4,  5, 17, 7;
  ...
		

Crossrefs

Programs

  • Magma
    A134226:= func< n,k | k eq n-1 select 3*n-4 else k >;
    [A134226(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_]:= If[k==n-1, 3*n-4, k];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 17 2021 *)
  • Sage
    def A134226(n,k): return 3*n-4 if k==n-1 else k
    flatten([[A134226(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Feb 17 2021
    

Formula

T(n, k) = A134082(n, k) + A002260(n, k) - I, an infinite lower triangular matrix and I = Identity matrix.
From G. C. Greubel, Feb 17 2021: (Start)
T(n, k) = 3*n - 4 if k = n-1 otherwise k.
Sum_{k=1..n} T(n, k) = A134227(n) = (n-1)*(n+6)/2 + [n=1]. (End)

Extensions

New name and more terms added by G. C. Greubel, Feb 17 2021
Showing 1-8 of 8 results.