cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A373245 Binomial transform of A135318.

Original entry on oeis.org

1, 2, 4, 9, 22, 55, 136, 331, 798, 1919, 4620, 11143, 26906, 64987, 156944, 378939, 914822, 2208455, 5331476, 12871151, 31073778, 75019219, 181113240, 437246723, 1055606686, 2548458047, 6152518684, 14853491319, 35859501322, 86572502155, 209004522016
Offset: 0

Views

Author

Paul Curtz, May 29 2024

Keywords

Crossrefs

Cf. A135318.
Cf. A114203.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2*x + x^2 + x^3)/((1 - 2*x - x^2)*(1 - 2*x + 2*x^2)), {x, 0, 30}], x] (* Vaclav Kotesovec, May 29 2024 *)

Formula

G.f.: (1 - 2*x + x^2 + x^3)/((1 - 2*x - x^2)*(1 - 2*x + 2*x^2)). - Vaclav Kotesovec, May 29 2024
a(n) = A114203(n+1)/2. - Hugo Pfoertner, May 29 2024
E.g.f.: exp(x)*(2*cos(x) + 4*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))/6. - Stefano Spezia, May 29 2024

Extensions

More terms from Vaclav Kotesovec, May 29 2024

A356050 a(n) = 2*A135318(n+1) - A135318(n).

Original entry on oeis.org

1, 1, 3, 4, 5, 6, 11, 14, 21, 26, 43, 54, 85, 106, 171, 214, 341, 426, 683, 854, 1365, 1706, 2731, 3414, 5461, 6826, 10923, 13654, 21845, 27306, 43691, 54614, 87381, 109226, 174763, 218454, 349525, 436906, 699051, 873814, 1398101, 1747626, 2796203, 3495254, 5592405
Offset: 0

Views

Author

Paul Curtz, Aug 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 1, 0, 2}, {1, 1, 3, 4}, 50] (* Amiram Eldar, Aug 19 2022 *)

Formula

a(n) = A135318(n) + A230096(n+1).
a(n) = a(n-8) + 5*A094958(n-5).
a(2*n) = A001045(n+2).
a(2*n+1) = A084214(n+1).
From Stefano Spezia, Aug 20 2022: (Start)
O.g.f.: (1 + x + 2*x^2 + 3*x^3)/((1 + x^2)*(1 - 2*x^2)).
E.g.f.: (8*cosh(sqrt(2)*x) - 2*cos(x) + 5*sqrt(2)*sinh(sqrt(2)*x) - 4*sin(x))/6. (End)
3*a(n) = A228826(n+1) +A094958(n+3). - R. J. Mathar, Jan 25 2023

A373392 Inverse binomial transform of A135318.

Original entry on oeis.org

1, 0, 0, 1, -2, 3, -4, 7, -18, 51, -136, 339, -814, 1935, -4620, 11111, -26842, 64923, -156944, 379067, -915078, 2208711, -5331476, 12870639, -31072754, 75018195, -181113240, 437248771, -1055610782, 2548462143, -6152518684, 14853483127, -35859484938, 86572485771
Offset: 0

Views

Author

Paul Curtz, Jun 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-4, -5, -2, 2}, {1, 0, 0, 1}, 35] (* Amiram Eldar, Jun 09 2024 *)
  • PARI
    a(n) = ((-([-2,-1;-1, 0]^(n-2))[2, 1]) - 2*((I-1)^(n-4) + (-I-1)^(n-4)))/3; \\ Thomas Scheuerle, Jun 04 2024

Formula

G.f.: (1 + 4*x + 5*x^2 + 3*x^3) / ( (1 + 2*x - x^2) * (1 + 2*x + 2*x^2) ).
E.g.f.: 1/6*exp(-x)*(2*cos(-x) + 4*cosh(sqrt(2)*-x) - 3*sqrt(2)*sinh(sqrt(2)*-x)).
a(n) = -4*a(n-1) - 5*a(n-2) - 2*a(n-3) + 2*a(n-4), for n > 4.
a(n) = (-1)^(n+1)*(A000129(n-2) + 2*A009545(n-2))/3, for n > 2. - Thomas Scheuerle, Jun 04 2024
a(n) = A373358(n-3) - (-1)^n*A009545(n+2) for n > 2.

A374927 a(n) = A135318(n)^2.

Original entry on oeis.org

1, 1, 1, 4, 9, 16, 25, 64, 121, 256, 441, 1024, 1849, 4096, 7225, 16384, 29241, 65536, 116281, 262144, 466489, 1048576, 1863225, 4194304, 7458361, 16777216, 29822521, 67108864, 119311929, 268435456, 477204025, 1073741824, 1908903481, 4294967296, 7635439161
Offset: 0

Views

Author

Paul Curtz, Jul 24 2024

Keywords

Comments

A374098 terms swapped by pairs.

Crossrefs

Formula

a(2*n) = A139818(n+1).
a(2*n+1) = 4^n = A000302(n).
a(n) = 3*a(n-2) +6*a(n-4) -8*a(n-6).

A379530 a(n) = (A135318(3*n) + A135318(3*n+1) + A135318(3*n+2))/3.

Original entry on oeis.org

1, 3, 8, 23, 64, 185, 512, 1479, 4096, 11833, 32768, 94663, 262144, 757305, 2097152, 6058439, 16777216, 48467513, 134217728, 387740103, 1073741824, 3101920825, 8589934592, 24815366599, 68719476736, 198522932793, 549755813888, 1588183462343, 4398046511104, 12705467698745
Offset: 0

Views

Author

Paul Curtz, Dec 24 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 7, 0, 8}, {1, 3, 8, 23}, 30] (* Amiram Eldar, Dec 31 2024 *)

Formula

a(n) = 7*a(n-2) + 8*a(n-4) with a(0)=1, a(1)=3, a(2)=8, a(3)=23 for n >= 4.
a(2*n) = A001018(n).
a(2*n+1) = A015565(n+1) + A013730(n).

A048573 a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 7, 13, 27, 53, 107, 213, 427, 853, 1707, 3413, 6827, 13653, 27307, 54613, 109227, 218453, 436907, 873813, 1747627, 3495253, 6990507, 13981013, 27962027, 55924053, 111848107, 223696213, 447392427, 894784853, 1789569707, 3579139413, 7158278827, 14316557653
Offset: 0

Views

Author

Michael Somos, Jun 17 1999

Keywords

Comments

Number of positive integers requiring exactly n signed bits in the modified non-adjacent form representation. - Ralf Stephan, Aug 02 2003
The n-th entry (n>1) of the sequence is equal to the 1,1-entry of the n-th power of the unnormalized 4 X 4 Haar matrix: [1 1 1 0 / 1 1 -1 0 / 1 1 0 1 / 1 1 0 -1]. - Simone Severini, Oct 27 2004
Pisano period lengths: 1, 1, 6, 2, 2, 6, 6, 2, 18, 2, 10, 6, 12, 6, 6, 2, 8, 18, 18, 2, ... - R. J. Mathar, Aug 10 2012
For n >= 1, a(n) is the number of ways to tile a strip of length n+2 with blue squares and blue and red dominos, with the restriction that the first two tiles must be the same color. - Guanji Chen and Greg Dresden, Jul 15 2024

Examples

			G.f. = 2 + 3*x + 7*x^2 + 13*x^3 + 27*x^4 + 53*x^5 + 107*x^6 + 213*x^7 + 427*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [(5*2^n+(-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Mathematica
    LinearRecurrence[{1,2},{2,3},40] (* Harvey P. Dale, Dec 11 2017 *)
  • PARI
    {a(n) = if( n<0, 0, (5*2^n + (-1)^n) / 3)};
    
  • PARI
    {a(n) = if (n<0 ,0, if( n<2, n+2, a(n-1) + 2*a(n-2)))};
    
  • Sage
    [(5*2^n+(-1)^n)/3 for n in range(35)] # G. C. Greubel, Apr 10 2019

Formula

G.f.: (2 + x) / (1 - x - 2*x^2).
a(n) = (5*2^n + (-1)^n) / 3.
a(n) = 2^(n+1) - A001045(n).
a(n) = A084170(n)+1 = abs(A083581(n)-3) = A081254(n+1) - A081254(n) = A084214(n+2)/2.
a(n) = 2*A001045(n+1) + A001045(n) (note that 2 is the limit of A001045(n+1)/A001045(n)). - Paul Barry, Sep 14 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=-charpoly(A,-1). - Milan Janjic, Jan 27 2010
Equivalently, with different offset, a(n) = b(n+1) with b(0)=1 and b(n) = Sum_{i=0..n-1} (-1)^i (1 + (-1)^i b(i)). - Olivier Gérard, Jul 30 2012
a(n) = A000975(n-2)*10 + 5 + 2*(-1)^(n-2), a(0)=2, a(1)=3. - Yuchun Ji, Mar 18 2019
a(n+1) = Sum_{i=0..n} a(i) + 1 + (1-(-1)^n)/2, a(0)=2. - Yuchun Ji, Apr 10 2019
a(n) = 2^n + J(n+1) = J(n+2) + J(n+1) - J(n), where J is A001045. - Yuchun Ji, Apr 10 2019
a(n) = A001045(n+2) + A078008(n) = A062510(n+1) - A078008(n+1) = (A001045(n+2) + A062510(n+1))/2 = A014551(n) + 2*A001045(n). - Paul Curtz, Jul 14 2021
From Thomas Scheuerle, Jul 14 2021: (Start)
a(n) = A083322(n) + A024493(n).
a(n) = A127978(n) - A102713(n).
a(n) = A130755(n) - A166249(n).
a(n) = A007679(n) + A139763(n).
a(n) = A168642(n) XOR A007283(n).
a(n) = A290604(n) + A083944(n). (End)
From Paul Curtz, Jul 21 2021: (Start)
a(n) = 5*A001045(n) - A280560(n+1) = abs(A140360(n+1)) - A280560(n+1).
a(n) = 2^n + A001045(n+1) = A001045(n+3) - A000079(n).
a(n) = A001045(n+4) - A340627(n). (End)
a(n) = A001045(n+5) - A005010(n).
a(n+1) + a(n) = a(n+2) - a(n) = 5*2^n. - Michael Somos, Feb 22 2023
a(n) = A135318(2*n) + A135318(2*n+1) = A112387(2*n) + A112387(2*n+1). - Paul Curtz, Jun 26 2024
E.g.f.: (cosh(x) + 5*cosh(2*x) - sinh(x) + 5*sinh(2*x))/3. - Stefano Spezia, May 18 2025

Extensions

Formula of Milan Janjic moved here from wrong sequence by Paul D. Hanna, May 29 2010

A112387 a(n) = 2^(n/2) if n is even and a(n-1) - a(n-2) if n is odd, a(1) = 1.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 8, 5, 16, 11, 32, 21, 64, 43, 128, 85, 256, 171, 512, 341, 1024, 683, 2048, 1365, 4096, 2731, 8192, 5461, 16384, 10923, 32768, 21845, 65536, 43691, 131072, 87381, 262144, 174763, 524288, 349525, 1048576, 699051, 2097152, 1398101, 4194304
Offset: 0

Views

Author

Edwin F. Sampang, Dec 05 2005

Keywords

Comments

This sequence originated from the Fibonacci sequence, but instead of adding the last two terms, you get the average. Example, if you have the initial condition a(1)=x and a(2)=y, a(3)=(x+y)/2, a(4)=(x+3y)/4, a(5)=(3x+5y)/8, a(6)=(5x+11y)/16 and so on and so forth. I used the coefficients of x and y as well as the denominator.
As n approaches infinity a(n)/a(n+1) oscillates between the values 3/2 and 1/3.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n::even, 2^(n/2), a(n-1)-a(n-2))
        end: a(1):=1:
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 27 2023
  • Mathematica
    a[1] = 1; a[2] = 2; a[n_] := a[n] = If[ EvenQ[n], 2^(n/2), a[n - 1] - a[n - 2]]; Array[a, 43] (* Robert G. Wilson v, Dec 05 2005 *)
    nxt[{n_,a_,b_}]:={n+1,b,If[OddQ[n],2^((n+1)/2),b-a]}; NestList[nxt,{2,1,2},50][[All,2]] (* Harvey P. Dale, Jul 08 2019 *)

Formula

a(n) = 2^(n/2) if n is even, a(n) = a(n-1) - a(n-2) if n is odd, and a(1) = 1.
a(2n) = A000079(n), a(2n-1) = A001045(n).
G.f.: (1+x+x^2)/((1+x^2)*(1-2*x^2)). - Joerg Arndt, Apr 25 2021
a(n) = A135318(n + (-1)^n). - Paul Curtz, Sep 27 2023
E.g.f.: (3*cosh(sqrt(2)*x) + sin(x) + sqrt(2)*sinh(sqrt(2)*x))/3. - Stefano Spezia, Jun 30 2024
a(2*n) + a(2*n+1) = A048573(n); a(2*n+1) + a(2*n+2) = A001045(n+3). - Paul Curtz, Jan 03 2025

Extensions

Edited and extended by Robert G. Wilson v, Dec 05 2005
a(0)=1 prepended by Alois P. Heinz, Sep 27 2023

A133684 a(2n) = A001045(n); a(1)=1; a(2n+1) = 2*A001045(n-1) for n >= 1.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 3, 2, 5, 6, 11, 10, 21, 22, 43, 42, 85, 86, 171, 170, 341, 342, 683, 682, 1365, 1366, 2731, 2730, 5461, 5462, 10923, 10922, 21845, 21846, 43691, 43690, 87381, 87382, 174763, 174762, 349525, 349526, 699051, 699050, 1398101, 1398102, 2796203, 2796202
Offset: 0

Views

Author

Paul Curtz, Jan 04 2008

Keywords

Crossrefs

Cf. A001045, A016116, A133730 (first differences).

Programs

Formula

a(4*n) + a(4*n+1) = a(4*n+2).
a(n) + a(n+2) = 2^floor(n/2) = A016116(n).
O.g.f.: x - x^2*(1 + 2*x^3)/((2*x^2-1)*(x^2+1)) . - R. J. Mathar, Feb 23 2008
a(n+1) = 2*A135318(n) - A135318(n+1). - Paul Curtz, May 27 2024

Extensions

Terms a(24) and beyond from Andrew Howroyd, Feb 02 2020

A366143 a(n) = a(n-2) + 2*a(n-4) - a(n-10), with a[0..9] = [1, 1, 1, 1, 1, 2, 3, 5, 6, 9].

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 5, 6, 9, 11, 18, 22, 35, 43, 69, 84, 134, 164, 263, 321, 513, 627, 1004, 1226, 1961, 2396, 3835, 4684, 7494, 9155, 14651, 17896, 28635, 34980, 55976, 68376, 109411, 133652, 213869, 261249, 418040, 510657, 817143, 998175, 1597247, 1951113
Offset: 0

Views

Author

Greg Dresden and Ziyi Xie, Sep 30 2023

Keywords

Comments

a(n) is the number of ways to tile a zig-zag strip of n cells using squares (of 1 cell) and strips (of 3 cells). Here is the zig-zag strip corresponding to n=11, with 11 cells:
_ _
_| |_| |_
| |_| |_| |_
|_| |_| |_| |
| |_| |_| |_|
|_| |_| |_|,
and here is the strip of 3 cells (which can be reflected)
_
_| |
_| _|
| _|
|_|
As an example, here is one of the a(11) = 18 ways to tile the zig-zag strip of 11 cells:
_ _
_| |_| |_
| |_| |_ |_
|_| _| |_ |
| _| |_| |_|
|_| |_| |_|

Crossrefs

Cf. A135318.

Programs

  • Mathematica
    LinearRecurrence[{0, 1, 0, 2, 0, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 1, 2,
      3, 5, 6, 9}, 40]

Formula

a(n) = a(n-2) + 2*a(n-4) - a(n-10).
a(2*n) = a(2*n-1) + a(2*n-4) - a(2*n-5) + a(2*n-6).
a(2*n+1) = a(2*n) + 2*a(2*n-3) - a(2*n-4) + a(2*n-6) - a(2*n-7).
G.f.: (x^8+x^7-x^5-2*x^4+x+1)/(x^10-2*x^4-x^2+1).

A365274 a(n) = a(n-2) + 4*a(n-4) - 2*a(n-8) - a(n-10), with a[0..9] = [1, 1, 1, 2, 3, 5, 7, 13, 18, 31].

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 13, 18, 31, 43, 78, 108, 190, 263, 471, 652, 1156, 1600, 2853, 3949, 7019, 9715, 17299, 23944, 42592, 58952, 104926, 145230, 258403, 357659, 636490, 880976, 1567619, 2169764, 3861135, 5344256, 9509879, 13162764, 23423036, 32420177
Offset: 0

Views

Author

Greg Dresden and Ziyi Xie, Oct 01 2023

Keywords

Comments

a(n) is the number of ways to tile a zig-zag strip of n cells using squares (of 1 cell) and strips and triangles (of 3 cells). Here is the zig-zag strip corresponding to n=11, with 11 cells:
_ _
_| |_| |_
| |_| |_| |_
|_| |_| |_| |
| |_| |_| |_|
|_| |_| |_|,
and here are the strip and triangle of 3 cells (which can be reflected):
_ _
_| | | |_
_| _| | |
| _| | _|
|_| |_|.
As an example, here is one of the a(11) = 78 ways to tile the zig-zag strip of 11 cells:
_ _
_| |_| |_
| |_| | |_
|_| _| _| |
| _| |_| |_|
|_| |_| |_|.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 1, 0, 4, 0, 0, 0, -2, 0, -1}, {1, 1, 1, 2, 3, 5, 7, 13, 18, 31}, 40]

Formula

a(n) = a(n-2) + 4*a(n-4) - 2*a(n-8) - a(n-10).
a(2*n) = a(2*n-1) + a(2*n-2) - a(2*n-3) + a(2*n-4).
a(2*n+1) = a(2*n) + a(2*n-2) +2*a(2*n-3) - a(2*n-4) - a(2*n-7).
G.f.: (x^8-x^5-2*x^4+x^3+x+1)/(x^10+2*x^8-4*x^4-x^2+1).
Showing 1-10 of 10 results.