cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A073743 Decimal expansion of cosh(1).

Original entry on oeis.org

1, 5, 4, 3, 0, 8, 0, 6, 3, 4, 8, 1, 5, 2, 4, 3, 7, 7, 8, 4, 7, 7, 9, 0, 5, 6, 2, 0, 7, 5, 7, 0, 6, 1, 6, 8, 2, 6, 0, 1, 5, 2, 9, 1, 1, 2, 3, 6, 5, 8, 6, 3, 7, 0, 4, 7, 3, 7, 4, 0, 2, 2, 1, 4, 7, 1, 0, 7, 6, 9, 0, 6, 3, 0, 4, 9, 2, 2, 3, 6, 9, 8, 9, 6, 4, 2, 6, 4, 7, 2, 6, 4, 3, 5, 5, 4, 3, 0, 3, 5, 5, 8, 7, 0, 4
Offset: 1

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

Also decimal expansion of cos(i). - N. J. A. Sloane, Feb 12 2010
cosh(x) = (e^x + e^(-x))/2.
Equals Sum_{n>=0} 1/A010050(n). See Gradsteyn-Ryzhik (0.245.5). - R. J. Mathar, Oct 27 2012
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			1.54308063481524377847790562075...
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:6 at page 20.

Crossrefs

Cf. A068118 (continued fraction), A073742, A073744, A073745, A073746, A073747, A049470, A137204.

Programs

  • Maple
    Digits:=100: evalf(cosh(1)); # Wesley Ivan Hurt, Nov 18 2014
  • Mathematica
    RealDigits[Cosh[1],10,120][[1]] (* Harvey P. Dale, Aug 03 2014 *)
  • PARI
    cosh(1)

Formula

Continued fraction representation: cosh(1) = 1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/((4*n^2 - 10*n + 7) - ... )))). See A051396 for proof. Cf. A049470 (cos(1)) and A073742 (sinh(1)). - Peter Bala, Sep 05 2016
Equals Product_{k>=0} 1 + 4/((2*k+1)*Pi)^2. - Amiram Eldar, Jul 16 2020
Equals 1/A073746 = A137204/2. - Hugo Pfoertner, Dec 27 2024

A174548 Decimal expansion of e - 1/e.

Original entry on oeis.org

2, 3, 5, 0, 4, 0, 2, 3, 8, 7, 2, 8, 7, 6, 0, 2, 9, 1, 3, 7, 6, 4, 7, 6, 3, 7, 0, 1, 1, 9, 1, 2, 0, 1, 6, 3, 0, 3, 1, 1, 4, 3, 5, 9, 6, 2, 6, 6, 8, 1, 9, 1, 7, 4, 0, 4, 5, 9, 1, 3, 0, 8, 2, 6, 0, 2, 6, 6, 1, 5, 1, 3, 4, 6, 0, 8, 6, 4, 7, 7, 9, 1, 2, 1, 4, 2, 3, 4, 9, 0, 4, 1, 7, 9, 2, 4, 6, 7, 8, 3, 6, 8, 0, 8, 3
Offset: 1

Views

Author

Paul Curtz, Mar 22 2010

Keywords

Examples

			2.3504023872876029137647637...
		

Crossrefs

Cf. A001113 (e), A068985 (1/e), and A137204 (e + 1/e), A073742 (sinh(1)).

Programs

  • Maple
    evalf(exp(1)-exp(-1)) ; # R. J. Mathar, Oct 14 2011
  • Mathematica
    RealDigits[E - 1/E, 10, 111][[1]]
  • PARI
    exp(1) - exp(-1) \\ Michel Marcus, May 05 2019

Formula

Equals 2 * sinh(1) = 2 * A073742. - Amiram Eldar, Nov 25 2020

Extensions

Edited and extended by Robert G. Wilson v, Apr 25 2010

A059563 Beatty sequence for e + 1/e.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 182, 185
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059564.
Cf. A137204 (e+1/e).

Programs

  • Mathematica
    Floor[Range[100]*(E + 1/E)] (* Paolo Xausa, Jul 06 2024 *)
  • PARI
    { default(realprecision, 100); b=exp(1) + 1/exp(1); for (n = 1, 2000, write("b059563.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*(e+1/e)). - Michel Marcus, Jan 04 2015

A344262 a(0)=1; for n>0, a(n) = a(n-1)*n+1 if n is even, (a(n-1)+1)*n otherwise.

Original entry on oeis.org

1, 2, 5, 18, 73, 370, 2221, 15554, 124433, 1119906, 11199061, 123189682, 1478276185, 19217590418, 269046265853, 4035693987810, 64571103804961, 1097708764684354, 19758757764318373, 375416397522049106, 7508327950440982121, 157674886959260624562
Offset: 0

Views

Author

Amrit Awasthi, May 13 2021

Keywords

Examples

			a(0) = 1;
a(1) = (a(0)+1)*1 =  (1+1)*1 =   2;
a(2) = (a(1)*2)+1 =  (2*2)+1 =   5;
a(3) = (a(2)+1)*3 =  (5+1)*3 =  18;
a(4) = (a(3)*4)+1 = (18*4)+1 =  73;
a(5) = (a(4)+1)*5 = (73+1)*5 = 370.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(n mod 2) end: a(0):= 1:
    seq(a(n), n=0..22);  # Alois P. Heinz, May 14 2021
  • Mathematica
    a[1] = 1; a[n_] := a[n] = If[OddQ[n], (n - 1)*a[n - 1] + 1, (n - 1)*(a[n - 1] + 1)]; Array[a, 25] (* Amiram Eldar, May 13 2021 *)

Formula

E.g.f.: (x+1)*cosh(x)/(1-x). - Alois P. Heinz, May 14 2021
Lim_{n->infinity} a(n)/n! = 2*cosh(1) = A137204 = 2*A073743. - Amrit Awasthi, May 15 2021
a(n) = A344317(n) - A155521(n-1) for n > 0. - Alois P. Heinz, May 18 2021

A344419 a(n) = n*a(n-1) + n^(n mod 2), a(0) = 0.

Original entry on oeis.org

0, 1, 3, 12, 49, 250, 1501, 10514, 84113, 757026, 7570261, 83272882, 999274585, 12990569618, 181867974653, 2728019619810, 43648313916961, 742021336588354, 13356384058590373, 253771297113217106, 5075425942264342121, 106583944787551184562, 2344846785326126060365
Offset: 0

Views

Author

Alois P. Heinz, May 17 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(n mod 2) end: a(0):= 0:
    seq(a(n), n=0..23);

Formula

E.g.f.: ((x+1)*cosh(x)-1)/(1-x).
a(n) = A344262(n) - n! = A344262(n) - A000142(n).
a(n) = A344418(n) - A155521(n-1) for n > 0.
Lim_{n->infinity} a(n)/n! = 2*cosh(1)-1 = 2*A073743-1 = e+1/e-1 = A137204-1. - Amrit Awasthi, May 20 2021

A197220 Numerators of convergents to e + 1/e.

Original entry on oeis.org

3, 34, 37, 71, 108, 179, 1003, 1182, 12823, 39651, 369682, 409333, 1188348, 28929685, 4109203618, 12356540539, 16465744157, 61753773010, 263480836197, 325234609207, 2214888491439, 2540123100646, 14915503994669, 32371131089984, 79657766174637, 112028897264621
Offset: 1

Views

Author

T. D. Noe, Oct 12 2011

Keywords

Crossrefs

Cf. A137204 (decimal), A197221 (denominators).

Programs

  • Maple
    numtheory:-cfrac(exp(1)+exp(-1), 100, 'ccon'):
    map(numer, ccon[1..-2]); # Robert Israel, Jun 08 2017
  • Mathematica
    Numerator[Convergents[E + 1/E, 40]]

A197221 Denominator of convergents to e + 1/e.

Original entry on oeis.org

1, 11, 12, 23, 35, 58, 325, 383, 4155, 12848, 119787, 132635, 385057, 9374003, 1331493483, 4003854452, 5335347935, 20009898257, 85374940963, 105384839220, 717683976283, 823068815503, 4833028053798, 10489124923099, 25811277899996, 36300402823095
Offset: 1

Views

Author

T. D. Noe, Oct 12 2011

Keywords

Crossrefs

Cf. A137204 (decimal), A197220 (numerators).

Programs

  • Maple
    numtheory:-cfrac(exp(1)+exp(-1), 100, 'ccon'):
    map(denom, ccon[1..-2]); # Robert Israel, Jun 08 2017
  • Mathematica
    Denominator[Convergents[E + 1/E, 40]]

A196080 Numerators of the sum of the n-th partial sums of the expansions of e and 1/e.

Original entry on oeis.org

2, 2, 3, 3, 37, 37, 1111, 1111, 6913, 6913, 799933, 799933, 739138093, 739138093, 44841044309, 44841044309, 32285551902481, 32285551902481, 9879378882159187, 9879378882159187, 1251387991740163687
Offset: 0

Views

Author

Paul Curtz, Sep 27 2011

Keywords

Comments

The n-th partial sums of the Taylor expansion of E are f(n) = A061354(n)/A061355(n) = 1, 2, 5/2, 8/3, 65/24, 163/60,.. .
The partial sums of an expansion of 1/e are essentially A000255(n-2)/A001048(n-1) preceded by 1 and 0, namely g(n)= 1, 0, 1/2, 1/3, 3/8, 11/30, 53/144, 103/280, 2119/5760,... (Jolley's partial sums of 1/E in A068985 is the bisection 0, 1/3, 11/30, 103/280, 16687/45360,... of g(n).)
The current sequence are the numerators of f(n)+g(n), converging to E+1/E, namely 2, 2, 3, 3, 37/12, 37/12, 1111/360, 1111/360, 6913/2240 = 62217/21060, 6913/2240 = 62217/21060, 799933/259200 = 5599531/1814400,... The unreduced fractions are apparently given by duplicated A051396(n+1)/A002674(n).

Examples

			a(0)=1+1, a(1)=2+0, a(2)=(5+1)/2, a(3)=(8+1)/3.
		

Crossrefs

Cf. A001113, A068985, A137204 (e+1/e).

Programs

  • Mathematica
    a[n_] := (E*Gamma[n+1, 1] + (1/E)*Gamma[n+1, -1])/n! // FullSimplify // Numerator; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 02 2012 *)

Extensions

Redefined by reduced fractions. - R. J. Mathar, Jul 02 2012
Showing 1-8 of 8 results.