A152725
a(n) = n*(n+1)*(n^4 + 2*n^3 - 2*n^2 - 3*n + 3)/2.
Original entry on oeis.org
0, 1, 63, 666, 3430, 12195, 34461, 83188, 178956, 352485, 647515, 1124046, 1861938, 2964871, 4564665, 6825960, 9951256, 14186313, 19825911, 27219970, 36780030, 48986091, 64393813, 83642076, 107460900, 136679725, 172236051, 215184438
Offset: 0
-
[n*(n+1)*(n^4+2*n^3-2*n^2-3*n+3)/2: n in [0..50]]; // G. C. Greubel, Sep 01 2018
-
k=0;lst={k};Do[k=n^6-k;AppendTo[lst,k],{n,1,5!}];lst
LinearRecurrence[{7,-21,35,-35,21,-7,1}, {0,1,63,666,3430,12195,34461}, 50] (* G. C. Greubel, Sep 01 2018 *)
CoefficientList[Series[-((x (1+56 x+246 x^2+56 x^3+x^4))/(-1+x)^7),{x,0,30}],x] (* Harvey P. Dale, Aug 03 2024 *)
-
a(n)=n*(n+1)*(n^4+2*n^3-2*n^2-3*n+3)/2 \\ Charles R Greathouse IV, Oct 07 2015
A255177
Second differences of seventh powers (A001015).
Original entry on oeis.org
1, 126, 1932, 12138, 47544, 140070, 341796, 730002, 1412208, 2531214, 4270140, 6857466, 10572072, 15748278, 22780884, 32130210, 44327136, 59978142, 79770348, 104476554, 134960280, 172180806, 217198212, 271178418
Offset: 0
Second differences: 1, 126, 1932, 12138, 47544, ... (this sequence)
First differences: 1, 127, 2060, 14324, 63801, ... (A152726)
----------------------------------------------------------------------
The seventh powers: 1, 128, 2187, 16384, 78125, ... (A001015)
----------------------------------------------------------------------
First partial sums: 1, 129, 2316, 18700, 96825, ... (A000541)
Second partial sums: 1, 130, 2446, 21146, 117971, ... (A250212)
Third partial sums: 1, 131, 2577, 23723, 141694, ... (A254641)
Fourth partial sums: 1, 132, 2709, 26432, 168126, ... (A254646)
Fifth partial sums: 1, 133, 2842, 29274, 197400, ... (A254684)
- Luciano Ancora, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Sums of powers of positive integers and their recurrence relations, section 0.5.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
[1] cat [14*(-1+n)*(9-22*n+23*n^2-12*n^3+3*n^4): n in [2..30]]; // Vincenzo Librandi, Mar 12 2015
-
Join[{1}, Table[14 n (3 n^4 + 5 n^2 + 1), {n, 1, 30}], {n, 0, 24}] (* or *)
CoefficientList[Series[(1 + 120 x + 1191 x^2 + 2416 x^3 + 1191 x^4 + 120 x^5 + x^6)/(1 - x)^6, {x, 0, 22}], x]
-
def A255177(n): return 14*n*(n**2*(3*n**2 + 5) + 1) if n else 1 # Chai Wah Wu, Oct 07 2024
A254684
Fifth partial sums of seventh powers (A001015).
Original entry on oeis.org
1, 133, 2842, 29274, 197400, 1001952, 4137966, 14597934, 45454773, 127861825, 330540028, 795609724, 1801339176, 3867558072, 7926516900, 15591322404, 29566276257, 54259095093, 96674782246, 167695627750, 283882296880
Offset: 1
First differences: 1, 127, 2060, 14324, 63801, ... (A152726)
----------------------------------------------------------------------
The seventh powers: 1, 128, 2187, 16384, 78125, ... (A001015)
----------------------------------------------------------------------
First partial sums: 1, 129, 2316, 18700, 96825, ... (A000541)
Second partial sums: 1, 130, 2446, 21146, 117971, ... (A250212)
Third partial sums: 1, 131, 2577, 23723, 141694, ... (A254641)
Fourth partial sums: 1, 132, 2709, 26432, 168126, ... (A254646)
Fifth partial sums: 1, 133, 2842, 29274, 197400, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (- 3 + 5 n + n^2) (- 2 + 5 n + n^2) (5 + 5 n + n^2)/95040, {n,21}] (* or *)
CoefficientList[Series[(- 1 - 120 x - 1191 x^2 - 2416 x^3 - 1191 x^4 - 120 x^5 - x^6)/(-1 + x)^13, {x,0,20}], x]
-
a(n)=n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(-3+5*n+n^2)*(-2+5*n+n^2)*(5+5*n+n^2)/95040 \\ Charles R Greathouse IV, Oct 07 2015
A152729
a(n) = (n-2)^4 - a(n-1) - a(n-2), with a(1) = a(2) = 0.
Original entry on oeis.org
0, 0, 1, 15, 65, 176, 384, 736, 1281, 2079, 3201, 4720, 6720, 9296, 12545, 16575, 21505, 27456, 34560, 42960, 52801, 64239, 77441, 92576, 109824, 129376, 151425, 176175, 203841, 234640, 268800, 306560, 348161, 393855, 443905, 498576, 558144
Offset: 1
0 + 0 + 1 = 1^4; 0 + 1 + 15 = 2^4; 1 + 15 + 65 = 3^4; ...
G.f. = x^3 + 15*x^4 + 65*x^5 + 176*x^6 + 384*x^7 + 736*x^8 + 1281*x^9 + ... - _Michael Somos_, Sep 02 2018
-
m:=50; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(x+1)*(x^2+10*x+1)/((1-x)^5*(x^2+x+1)))); // G. C. Greubel, Sep 01 2018
-
k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^4-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,4!}];lst
LinearRecurrence[{4,-6,5,-5,6,-4,1}, {0,0,1,15,65,176,384}, 50] (* G. C. Greubel, Sep 01 2018 *)
a[ n_] := With[ {m = Max[n, 2 - n]}, SeriesCoefficient[ x^3 (1 + x) (1 + 10 x + x^2) / ((1 - x)^5 (1 + x + x^2)), {x , 0, m}]]; (* Michael Somos, Sep 02 2018 *)
-
concat([0,0], Vec(-x^3*(x+1)*(x^2+10*x+1)/((x-1)^5*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 28 2014
-
{a(n) = my(m = max(n, 2 - n)); polcoeff( x^3 * (1 + x) * (1 + 10*x + x^2) / ((1 - x)^5 * (1 + x + x^2)) + x * O(x^m), m)}; /* Michael Somos, Sep 02 2018 */
A152730
a(n) + a(n+1) + a(n+2) = n^5, with a(1) = a(2) = 0.
Original entry on oeis.org
0, 0, 1, 31, 211, 782, 2132, 4862, 9813, 18093, 31143, 50764, 79144, 118924, 173225, 245675, 340475, 462426, 616956, 810186, 1048957, 1340857, 1694287, 2118488, 2623568, 3220568, 3921489, 4739319, 5688099, 6782950, 8040100, 9476950
Offset: 1
0 + 0 + 1 = 1^5; 0 + 1 + 31 = 2^5; 1 + 31 + 211 = 3^5; ...
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,11,-10,11,-10,5,-1).
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(x^4+26*x^3+66*x^2+26*x+1)/((x-1)^6*(x^2+x+1)))); // G. C. Greubel, Sep 01 2018
-
k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^5-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst
LinearRecurrence[{5,-10,11,-10,11,-10,5,-1}, {0,0,1,31,211,782,2132, 4862}, 50] (* G. C. Greubel, Sep 01 2018 *)
CoefficientList[Series[x^2*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1) / ((x - 1)^6*(x^2 + x + 1)),{x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)
-
concat([0,0], Vec(x^3*(x^4+26*x^3+66*x^2+26*x+1)/((x-1)^6*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 28 2014
A152731
a(n) + a(n+1) + a(n+2) = n^6, a(1)=a(2)=0.
Original entry on oeis.org
0, 0, 1, 63, 665, 3368, 11592, 31696, 74361, 156087, 300993, 542920, 927648, 1515416, 2383745, 3630375, 5376505, 7770336, 10990728, 15251160, 20803993, 27944847, 37017281, 48417776, 62600832, 80084368, 101455425, 127375983
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,21,-21,21,-21,15,-6,1).
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(1+x)*(x^4+56*x^3+246*x^2+56*x+1)/((1-x)^7*(1 +x+ x^2)))); // G. C. Greubel, Sep 01 2018
-
k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^6-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst
LinearRecurrence[{6, -15, 21, -21, 21, -21, 15, -6, 1}, {0, 0, 1, 63, 665, 3368, 11592, 31696, 74361}, 5000]
CoefficientList[Series[x^2*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1)/((1-x)^7*(1+x+x^2)),{x, 0, 5000}], x] (* Stefano Spezia, Sep 02 2018 *)
-
x='x+O('x^30); concat([0,0], Vec(x^3*(1+x)*(x^4+56*x^3 +246*x^2 +56*x+1)/((1-x)^7*(1+x+x^2)))) \\ G. C. Greubel, Sep 01 2018
A152732
a(n) + a(n+1) + a(n+2) = 2^n.
Original entry on oeis.org
0, 0, 2, 2, 4, 10, 18, 36, 74, 146, 292, 586, 1170, 2340, 4682, 9362, 18724, 37450, 74898, 149796, 299594, 599186, 1198372, 2396746, 4793490, 9586980, 19173962, 38347922, 76695844, 153391690, 306783378, 613566756, 1227133514, 2454267026, 4908534052
Offset: 1
-
I:=[0,0,2]; [n le 3 select I[n] else Self(n-1) +Self(n-2) +2*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 01 2018
-
k0=k1=0;lst={k0,k1};Do[kt=k1;k1=2^n-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst
LinearRecurrence[{1, 1, 2}, {0, 0, 2}, 70] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)
-
concat([0,0],Vec(2/(1-2*x)/(1+x+x^2)+O(x^99))) \\ Charles R Greathouse IV, Feb 24 2012
A152733
a(n) + a(n+1) + a(n+2) = 3^n.
Original entry on oeis.org
0, 0, 3, 6, 18, 57, 168, 504, 1515, 4542, 13626, 40881, 122640, 367920, 1103763, 3311286, 9933858, 29801577, 89404728, 268214184, 804642555, 2413927662, 7241782986, 21725348961, 65176046880, 195528140640, 586584421923, 1759753265766, 5279259797298
Offset: 1
0 + 0 + 3 = 3^1; 0 + 3 + 6 = 3^2; 3 + 6 + 18 = 3^3; ...
-
[n le 2 select 0 else 3^(n-2) -Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 31 2014
-
k0=k1=0;lst={k0,k1};Do[kt=k1;k1=3^n-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst
Rest[CoefficientList[Series[3x^3/((1-3x)(1+x+x^2)),{x,0,30}],x]] (* Harvey P. Dale, Aug 31 2014 *)
-
x='x+O('x^30); concat([0,0], Vec(3*x^3/((1-3*x)*(1+x+x^2)))) \\ G. C. Greubel, Sep 01 2018
A261032
a(n) = (-1)^n*(n^8 + 4*n^7 - 14*n^5 + 28*n^3 - 17*n)/2.
Original entry on oeis.org
0, -1, 255, -6306, 59230, -331395, 1348221, -4416580, 12360636, -30686085, 69313915, -145044966, 284936730, -530793991, 944995065, -1617895560, 2677071736, -4298685705, 6721274871, -10262288170, 15337711830, -22485147531, 32390726005, -45920259276, 64155054900, -88432835725
Offset: 0
a(0) = 0^8 = 0,
a(1) = 0^8 -1^8 = -1,
a(2) = 0^8 -1^8 + 2^8 = 255,
a(3) = 0^8 -1^8 + 2^8 - 3^8 = -6306,
a(4) = 0^8 -1^8 + 2^8 - 3^8 + 4^8 = 59230,
a(5) = 0^8 -1^8 + 2^8 - 3^8 + 4^8 - 5^8 = -331395, etc.
- Robert Israel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (-9,-36,-84,-126,-126,-84,-36,-9,-1 ).
-
[(-1)^n*(n^8+4*n^7-14*n^5+28*n^3-17*n)/2: n in [0..30]]; // Vincenzo Librandi, Nov 20 2015
-
seq((-1)^n*(n^8 + 4*n^7 - 14*n^5 + 28*n^3 - 17*n)/2, n = 0 .. 100); # Robert Israel, Nov 18 2015
-
Table[(1/2) (-1)^n n (n + 1) (n^6 + 3 n^5 - 3 n^4 - 11 n^3 + 11 n^2 + 17 n - 17), {n, 0, 25}]
-
vector(100, n, n--; (-1)^n*(n^8+4*n^7-14*n^5+28*n^3-17*n)/2) \\ Altug Alkan, Nov 18 2015
-
[(-1)^n*(n^8 +4*n^7 -14*n^5 +28*n^3 -17*n)/2 for n in (0..40)] # G. C. Greubel, Apr 02 2021
Showing 1-9 of 9 results.
Comments