cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A188386 a(n) = numerator(H(n+2)-H(n-1)), where H(n) = Sum_{k=1..n} 1/k is the n-th harmonic number.

Original entry on oeis.org

11, 13, 47, 37, 107, 73, 191, 121, 299, 181, 431, 253, 587, 337, 767, 433, 971, 541, 1199, 661, 1451, 793, 1727, 937, 2027, 1093, 2351, 1261, 2699, 1441, 3071, 1633, 3467, 1837, 3887, 2053, 4331, 2281, 4799, 2521, 5291, 2773, 5807, 3037, 6347, 3313, 6911, 3601
Offset: 1

Views

Author

Gary Detlefs, Mar 29 2011

Keywords

Comments

Denominators are listed in A033931.
A027446 appears to be divisible by a(n).
The sequence lists also the largest odd divisors of 3*m^2-1 (A080663) for m>1. In fact, for m even, the largest odd divisor is 3*m^2-1 itself; for m odd, the largest odd divisor is (3*m^2-1)/2. From this follows the second formula given in Formula field. - Bruno Berselli, Aug 27 2013

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a188386 n = a188386_list !! (n-1)
    a188386_list = map numerator $ zipWith (-) (drop 3 hs) hs
       where hs = 0 : scanl1 (+) (map (1 %) [1..])
    -- Reinhard Zumkeller, Jul 03 2012
  • Magma
    [Numerator((3*n^2+6*n+2)/((n*(n+1)*(n+2)))): n in [1..50]]; // Vincenzo Librandi, Mar 30 2011
    
  • Maple
    seq((3-(-1)^n)*(3*n^2+6*n+2)/4, n=1..100);
  • Mathematica
    Table[(3 - (-1)^n)*(3*n^2 + 6*n + 2)/4, {n, 40}] (* Wesley Ivan Hurt, Jan 29 2017 *)
    Numerator[#[[4]]-#[[1]]]&/@Partition[HarmonicNumber[Range[0,50]],4,1] (* or *) LinearRecurrence[{0,3,0,-3,0,1},{11,13,47,37,107,73},50] (* Harvey P. Dale, Dec 31 2017 *)

Formula

a(n) = numerator((3*n^2+6*n+2)/(n*(n+1)*(n+2))).
a(n) = (3-(-1)^n)*(3*n^2+6*n+2)/4.
a(2n+1) = A158463(n+1), a(2n) = A003154(n+1).
G.f.: -x*(11+13*x+14*x^2-2*x^3-x^4+x^5) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Apr 09 2011
a(n) = numerator of coefficient of x^3 in the Maclaurin expansion of sin(x)*exp((n+1)*x). - Francesco Daddi, Aug 04 2011
H(n+3) = 3/2 + 2*f(n)/((n+2)*(n+3)), where f(n) = Sum_{k=0..n}((-1)^k*binomial(-3,k)/(n+1-k)). - Gary Detlefs, Jul 17 2011
a(n) = A213998(n+2,2). - Reinhard Zumkeller, Jul 03 2012
Sum_{n>=1} 1/a(n) = c*(tan(c) - cot(c)/2) - 1/2, where c = Pi/(2*sqrt(3)). - Amiram Eldar, Sep 27 2022

A331952 a(n) = (-7 + (-1)^(1+n) + 6*n^2) / 8.

Original entry on oeis.org

-1, 0, 2, 6, 11, 18, 26, 36, 47, 60, 74, 90, 107, 126, 146, 168, 191, 216, 242, 270, 299, 330, 362, 396, 431, 468, 506, 546, 587, 630, 674, 720, 767, 816, 866, 918, 971, 1026, 1082, 1140, 1199, 1260, 1322, 1386, 1451, 1518, 1586, 1656, 1727, 1800, 1874, 1950, 2027
Offset: 0

Views

Author

Paul Curtz, Feb 02 2020

Keywords

Comments

a(n+1) is once in the hexagonal spiral in A330707. a(n+2) is twice in the same spiral.
a(n) has one odd followed by three evens.
Difference table:
-1, 0, 2, 6, 11, 18, 26, 36, ... = a(n)
1, 2, 4, 5, 7, 8, 10, 11, ... = A001651(n+1)
1, 2, 1, 2, 1, 2, 1, 2, ... = A000034.

Examples

			G.f. = -1 + 2*x^2 + 6*x^3 + 11*x^4 + 18*x^5 + 26*x^6 + 36*x^7 + 47*x^8 + ... - _Michael Somos_, Sep 08 2023
		

Crossrefs

Equals 2 less than A084684, 1 less than A077043, and 1 more than A276382(n-1). - Greg Dresden, Feb 22 2020

Programs

  • Magma
    a:=[-1,0,2,6]; [n le 4 select a[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..45]]; // Marius A. Burtea, Feb 02 2020
    
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {-1, 0, 2, 6}, 100] (* Amiram Eldar, Feb 02 2020 *)
    a[n_] := Floor[(n^2 - 1)*3/4]; (* Michael Somos, Sep 08 2023 *)
  • PARI
    Vec(-(1 - 2*x - 2*x^2) / ((1 - x)^3*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 03 2020
    
  • PARI
    {a(n) = (n^2 - 1)*3\4}; /* Michael Somos, Sep 08 2023 */

Formula

a(-n) = a(n).
a(20+n) - a(n) = 30*(10+n).
a(2+n) = a(n) + 3*(1+n), a(0)=-1 and a(1)=0.
a(4*n) = 12*n^2 - 1, a(1+4*n) = 6*n*(1+2*n), a(2+4*n) = 2 + 12*n*(1+n), a(3+4*n) = 6*(1+n)*(1+2*n) for n>= 0.
From Colin Barker, Feb 02 2020: (Start)
G.f.: -(1 - 2*x - 2*x^2) / ((1 - x)^3*(1 + x)).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>3.
a(n) = (-7 + (-1)^(1+n) + 6*n^2) / 8.
(End)
E.g.f.: (1/8)*(exp(x)*(6*x^2 + 6*x - 7) - exp(-x)). - Stefano Spezia, Feb 02 2020 after Colin Barker
a(n) = floor((n^2 - 1)*3/4). - Michael Somos, Sep 09 2023

Extensions

a(42)-a(52) from Stefano Spezia, Feb 02 2020

A065532 a(n) = 48*n^2 - 1.

Original entry on oeis.org

-1, 47, 191, 431, 767, 1199, 1727, 2351, 3071, 3887, 4799, 5807, 6911, 8111, 9407, 10799, 12287, 13871, 15551, 17327, 19199, 21167, 23231, 25391, 27647, 29999, 32447, 34991, 37631, 40367, 43199, 46127, 49151, 52271, 55487, 58799, 62207, 65711, 69311, 73007, 76799
Offset: 0

Views

Author

Labos Elemer, Nov 28 2001

Keywords

Crossrefs

Cf. A158463.

Programs

  • Magma
    [48*n^2 - 1: n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
  • Mathematica
    CoefficientList[Series[(1-50*x-47*x^2)/(x-1)^3,{x,0,40}],x] (* Vincenzo Librandi, Jul 08 2012 *)
    LinearRecurrence[{3,-3,1},{-1,47,191},40] (* Harvey P. Dale, Dec 13 2017 *)
  • PARI
    A065532(n)=48*n^2-1
    

Formula

From Vincenzo Librandi, Jul 08 2012: (Start)
G.f.: (1 - 50*x - 47*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 19 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(4*sqrt(3)))*Pi/(4*sqrt(3)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(4*sqrt(3)))*Pi/(4*sqrt(3)) - 1)/2. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: exp(x)*(48*x^2 + 48*x - 1).
a(n) = A158463(2*n). (End)

Extensions

Better description from Randall L Rathbun, Jan 19 2002
Offset changed from 1 to 0 by Harry J. Smith, Oct 21 2009

A158543 a(n) = 144*n^2 - 12.

Original entry on oeis.org

132, 564, 1284, 2292, 3588, 5172, 7044, 9204, 11652, 14388, 17412, 20724, 24324, 28212, 32388, 36852, 41604, 46644, 51972, 57588, 63492, 69684, 76164, 82932, 89988, 97332, 104964, 112884, 121092, 129588, 138372, 147444, 156804, 166452, 176388, 186612, 197124, 207924
Offset: 1

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (24*n^2 - 1)^2 - (144*n^2 - 12)*(2*n)^2 = 1 can be written as A158544(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[132, 564, 1284]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {132, 564, 1284}, 50] (* Vincenzo Librandi, Feb 14 2012 *)
    144*Range[40]^2-12 (* Harvey P. Dale, Oct 20 2012 *)
  • PARI
    for(n=1, 40, print1(144*n^2 - 12", ")); \\ Vincenzo Librandi, Feb 14 2012

Formula

From Vincenzo Librandi, Feb 14 2012: (Start)
G.f.: -x*(132 + 168*x - 12*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 06 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)))/24.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)) - 1)/24. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 12*(exp(x)*(12*x^2 + 12*x - 1) + 1).
a(n) = 12*A158463(n). (End)

Extensions

Comment rewritten by R. J. Mathar, Oct 16 2009

A158462 a(n) = 36*n^2 - 6.

Original entry on oeis.org

30, 138, 318, 570, 894, 1290, 1758, 2298, 2910, 3594, 4350, 5178, 6078, 7050, 8094, 9210, 10398, 11658, 12990, 14394, 15870, 17418, 19038, 20730, 22494, 24330, 26238, 28218, 30270, 32394, 34590, 36858, 39198, 41610, 44094, 46650, 49278, 51978, 54750, 57594, 60510
Offset: 1

Views

Author

Vincenzo Librandi, Mar 19 2009

Keywords

Comments

The identity (12*n^2 - 1)^2 - (36*n^2 - 6)*(2*n)^2 = 1 can be written as A158463(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[30, 138, 318]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 12 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {30, 138, 318}, 50] (* Vincenzo Librandi, Feb 12 2012 *)
    36Range[50]^2-6 (* Harvey P. Dale, Jul 19 2025 *)
  • PARI
    for(n=1, 40, print1(36*n^2-6", ")); \\ Vincenzo Librandi, Feb 12 2012

Formula

G.f.: 6*x*(5 + 8*x - x^2)/(1-x)^3. - Bruno Berselli, Aug 27 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 12 2012
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(6))*Pi/sqrt(6))/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(6))*Pi/sqrt(6) - 1)/12. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 6*(exp(x)*(6*x^2 + 6*x - 1) + 1).
a(n) = 6*A140811(n). (End)

A193051 Primes p such that 12*p^2-1 and 16*p^3-1 are also primes.

Original entry on oeis.org

2, 3, 17, 29, 107, 167, 173, 599, 1667, 1889, 2129, 3407, 3539, 3797, 3863, 5189, 6779, 6983, 7529, 8849, 11399, 11519, 11657, 12227, 12437, 12809, 13217, 14153, 15227, 16223, 16607, 17609, 21683, 21863, 22193, 23789, 25127
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 15 2011

Keywords

Comments

Primes p such that 3*(2p)^2-1 (see A089681) and 2*(2p)^3-1 are primes.

Examples

			For p=2, 2 is a prime number, 12*2^2-1=47 is a prime number and 16*2^3-1=127 is a prime number.
For p=3, 3 is a prime number, 12*3^2-1=109 is a prime number and 16*3^3-1=431 is a prime number.
		

Crossrefs

Cf. A158463.

Programs

  • Magma
    [p: p in PrimesUpTo(26000)|IsPrime(12*p^2-1) and IsPrime(16*p^3-1)]; // Vincenzo Librandi, Apr 10 2013
  • Mathematica
    fQ[n_] := PrimeQ[12 n^2 - 1] && PrimeQ[16 n^3 - 1]; Select[ Prime@ Range@ 3000, fQ] (* Robert G. Wilson v, Aug 08 2011 *)
    Select[Prime[Range[5000]], PrimeQ[12 #^2 - 1] && PrimeQ[16 #^3 - 1]&] (* Vincenzo Librandi, Apr 10 2013 *)
Showing 1-6 of 6 results.