cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A018253 Divisors of 24.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 24
Offset: 1

Views

Author

Keywords

Comments

The divisors of 24 greater than 1 are the only positive integers n with the property m^2 == 1 (mod n) for all integer m coprime to n. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 10 2001
Numbers n for which all Dirichlet characters are real. - Benoit Cloitre, Apr 21 2002
These are the numbers n that are divisible by all numbers less than or equal to the square root of n. - Tanya Khovanova, Dec 10 2006 [For a proof, see the Tauvel paper in references. - Bernard Schott, Dec 20 2012]
Also, numbers n such that A160812(n) = 0. - Omar E. Pol, Jun 19 2009
It appears that these are the only positive integers n such that A160812(n) = 0. - Omar E. Pol, Nov 17 2009
24 is a highly composite number: A002182(6)=24. - Reinhard Zumkeller, Jun 21 2010
Chebolu points out that these are exactly the numbers for which the multiplication table of the integers mod n have 1s only on their diagonal, i.e., ab == 1 (mod n) implies a = b (mod n). - Charles R Greathouse IV, Jul 06 2011
It appears that 3, 4, 6, 8, 12, 24 (the divisors >= 3 of 24) are also the only numbers n whose proper non-divisors k are prime numbers if k = d-1 and d divides n. - Omar E. Pol, Sep 23 2011
About the last Pol's comment: I have searched to 10^7 and have found no other terms. - Robert G. Wilson v, Sep 23 2011
Sum_{i=1..8} A000005(a(i))^3 = (Sum_{i=1..8} A000005(a(i)))^2, see Kordemsky in References and Barbeau et al. in Links section. - Bruno Berselli, Dec 29 2014

Examples

			Square root of 12 = 3.46... and 1, 2 and 3 divide 12.
From the tenth comment: 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 6^3 + 8^3 = (1+2+2+3+4+4+6+8)^2 = 900. - _Bruno Berselli_, Dec 28 2014
		

References

  • Harvey Cohn, "Advanced Number Theory", Dover, chap.II, p. 38
  • Boris A. Kordemsky, The Moscow Puzzles: 359 Mathematical Recreations, C. Scribner's Sons (1972), Chapter XIII, Paragraph 349.
  • Patrick Tauvel, "Exercices d'algèbre générale et d'arithmétique", Dunod, 2004, exercice 70 page 368.

Crossrefs

Cf. A000005, A158649. - Bruno Berselli, Dec 29 2014
Cf. A303704 (with respect to Astudillo's 2001 comment above).

Programs

Formula

a(n) = A161710(n-1). - Reinhard Zumkeller, Jun 21 2009

A018255 Divisors of 30.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 15, 30
Offset: 1

Views

Author

Keywords

Comments

For n > 1, These are also numbers m such that k^4 + (k+1)^4 + ... + (k + m - 1)^4 is prime for some k and numbers m such that k^8 + (k+1)^8 + ... + (k + m - 1)^8 is prime for some k. - Derek Orr, Jun 12 2014
These seem to be the numbers m such that tau(n) = n*sigma(n) mod m for all n. See A098108 (mod 2), A126825 (mod 3), and A126832 (mod 5). - Charles R Greathouse IV, Mar 17 2022
The squarefree 5-smooth numbers: intersection of A051037 and A005117. - Amiram Eldar, Sep 26 2023

Examples

			From the second comment: 1^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 8^3 = (1 + 2 + 2 + 2 + 4 + 4 + 4 + 8)^2 = 729. - _Bruno Berselli_, Dec 28 2014
		

References

  • Boris A. Kordemsky, The Moscow Puzzles: 359 Mathematical Recreations, C. Scribner's Sons (1972), Chapter XIII, Paragraph 349.

Crossrefs

Programs

Formula

a(n) = A161715(n-1). - Reinhard Zumkeller, Jun 21 2009
Sum_{i=1..8} A000005(a(i))^3 = (Sum_{i=1..8} A000005(a(i)))^2, see Kordemsky in References and Barbeau et al. in Links section. - Bruno Berselli, Dec 28 2014

A369469 a(n) = number of integer solutions to 1 <= x1 < x2 < ... < xn to 1/x1 + ... + 1/xn = (1 - 1/x1) * ... * (1 - 1/xn).

Original entry on oeis.org

1, 1, 1, 24, 293, 9219, 787444
Offset: 1

Views

Author

Max Alekseyev, Jan 23 2024

Keywords

Comments

For any n, A369470(n) >= a(n) >= 1 (see A369607).

Crossrefs

A369470 a(n) = number of integer solutions to 1 <= x1 <= x2 <= ... <= xn to 1/x1 + ... + 1/xn = (1 - 1/x1) * ... * (1 - 1/xn).

Original entry on oeis.org

1, 1, 2, 35, 455, 13624, 1176579
Offset: 1

Views

Author

Max Alekseyev, Jan 23 2024

Keywords

Comments

For any n, a(n) >= A369469(n) >= 1 (see A369607).

Crossrefs

A075461 List of solutions to the Znám problem sorted first by length, then lexicographically.

Original entry on oeis.org

2, 3, 7, 47, 395, 2, 3, 11, 23, 31, 2, 3, 7, 43, 1823, 193667, 2, 3, 7, 47, 403, 19403, 2, 3, 7, 47, 415, 8111, 2, 3, 7, 47, 583, 1223, 2, 3, 7, 55, 179, 24323, 2, 3, 7, 43, 1807, 3263447, 2130014000915, 2, 3, 7, 43, 1807, 3263591, 71480133827, 2, 3, 7, 43
Offset: 1

Views

Author

Eric W. Weisstein, Sep 16 2002

Keywords

Examples

			Starts with A075441(5)=2 5-term solutions 2,3,7,47,395; 2,3,11,23,31, followed by A075441(6)=5 6-term solutions, etc.
		

Crossrefs

Extensions

Edited by Max Alekseyev, Jan 25 2024

A225808 Values (Sum_{1<=i<=k} x_i)^2 = Sum_{1<=i<=k} x_i^3 for 1 <= x_1 <= x_2 <=...<= x_k ordered lexicographically according to (x1, x2,..., xk).

Original entry on oeis.org

1, 9, 16, 36, 81, 81, 100, 144, 256, 169, 225, 324, 361, 625, 144, 256, 324, 441, 324, 361, 441, 625, 256, 576, 729, 784, 576, 729, 900, 961, 1089, 1296, 484, 625, 784, 900, 484, 441, 576, 729, 784, 900, 1089, 1089, 1156, 1369, 625, 784, 729, 900, 1089, 1369, 1296, 1600, 900, 961, 1089
Offset: 1

Views

Author

Keywords

Comments

a(n) <= k^4 where k is the size of the ordered tuple (x_1, x_2,..., x_k).
This sequence is closed under multiplication, that is, if m and n are in this sequence, so is m*n.

Examples

			1;
9, 16;
36, 81;
81, 100, 144, 256;
169, 225, 324, 361, 625;
144, 256, 324, 441, 324, 361, 441, 625, 256, 576, 729, 784, 576, 729, 900, 961, 1089, 1296;
484, 625, 784, 900, 484, 441, 576, 729, 784, 900, 1089, 1089, 1156, 1369, 625, 784, 729, 900, 1089, 1369, 1296, 1600, 900, 961, 1089, 1600, 1296, 1600, 2025, 2401;
		

Crossrefs

Programs

  • Mathematica
    row[n_] := Reap[Module[{v, m}, v = Table[1, {n}]; m = n^(4/3); While[ v[[-1]] < m, v[[1]]++; If[v[[1]] > m, For[i = 2, i <= m, i++, If[v[[i]] < m, v[[i]]++; For[j = 1, j <= i - 1, j++, v[[j]] = v[[i]]]; Break[]]]]; If[Total[v^3] == Total[v]^2, Sow[Total[v]^2]]]]][[2, 1]];
    Array[row, 7] // Flatten (* Jean-François Alcover, Feb 23 2019, from PARI *)
  • PARI
    row(n)=my(v=vector(n,i,1),N=n^(4/3)); while(v[#v]N,for(i=2, N,if(v[i]
    				

A225819 Consider the set of n-tuples such that the sum of cubes of the elements is equal to square of their sum; sequence gives largest element in all such tuples.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 12, 14, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 44, 46, 48, 51, 53, 55, 58, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 88, 90, 93, 96, 98, 101, 104, 106, 109, 112, 115, 117, 120, 123, 126, 129, 132, 134, 137, 140, 143, 146, 149, 152, 155
Offset: 1

Views

Author

Keywords

Comments

Conjecture [Sen]: lim inf log_n a(n) >= 5/4.

Examples

			Call an n-multiset with the sum of cubes of the elements equal to square of their sum an n-SCESS.
a(6) = 7 since the only 6-SCESS with the largest element >= 7 are (2, 4, 4, 5, 5, 7), (3, 3, 3, 3, 5, 7), (3, 4, 5, 5, 6, 7), (3, 5, 5, 5, 6, 7) and (4, 5, 5, 6, 6, 7) and none have an element larger than 7.
a(7) = 9 since the only 7-SCESS with the largest element >= 9 are (4, 4, 4, 5, 5, 5, 9), (4, 5, 5, 5, 6, 6, 9) and (6, 6, 6, 6, 6, 6, 9) and none have an element larger than 9.
a(8) = 10 since the only 8-SCESS with the largest element >= 10 are (2, 5, 5, 5, 5, 5, 6, 10), (2, 6, 6, 6, 6, 6, 6, 10), (3, 4, 5, 5, 5, 6, 7, 10), (3, 4, 5, 5, 6, 6, 7, 10), (3, 5, 5, 5, 6, 7, 7, 10), (3, 6, 6, 6, 7, 7, 7, 10), (4, 4, 4, 4, 4, 4, 6, 10), (4, 4, 4, 4, 5, 5, 7, 10), (4, 5, 5, 6, 6, 7, 8, 10), (5, 5, 5, 7, 7, 7, 8, 10) and (6, 6, 6, 6, 6, 6, 9, 10) and none have an element larger than 10.
		

Crossrefs

Programs

  • PARI
    a(n)=my(v=vector(n, i, 1), N=n^(4/3), m=n); while(v[#v]N, for(i=2, N, if(v[i]
    				

Formula

n <= a(n) <= n^(4/3), see A158649.

A227847 Number of tuples (x_1, x_2, ..., x_n) with 1 <= x_1 <= x_2 <= ... <= x_n such that Sum_{i=1..n} x_i^3 = (Sum_{i=1..n} x_i)^2 and Sum_{i=1..n-1} x_i^3 + (x_n-1)^3 + (x_n+1)^3 = (Sum_{i=1..n-1} x_i + 2x_n)^2.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 6, 10, 31, 77, 206, 568, 1704, 5037, 15554
Offset: 1

Views

Author

Jimmy Zotos, Aug 01 2013

Keywords

Comments

An n-tuple meeting the first condition is called an n-SCESS ("sum of cubes equals square of sum").
In other words, a(n) is the number of tuples (x_1, x_2, ..., x_n) satisfying SCESS such that (x_1, x_2, ..., x_{n-1}, x_n - 1, x_n + 1) also satisfies SCESS. - Max Alekseyev, Mar 04 2025
x_1 + x_2 + ... + x_{n-1} = A152948(x_n). - Balarka Sen, Aug 01 2013

Examples

			a(3) = 1 since the only 3-SCESS is (1, 2, 3) for which the corresponding ordered tuple (1, 2, 2, 4) satisfy the SCESS property. (See Mason et al.)
a(5) = 2 since the only 5-SCESS are (1, 2, 2, 3, 5) and (3, 3, 3, 3, 6) for which the corresponding ordered tuples (1, 2, 2, 3, 4, 6) and (3, 3, 3, 3, 5, 7) satisfy the SCESS property.
a(8) = 6 since the only 8-SCESS are (1, 1, 2, 4, 5, 5, 5, 8), (1, 2, 2, 3, 4, 5, 6, 8), (2, 2, 4, 4, 6, 6, 6, 9), (2, 6, 6, 6, 6, 6, 6, 10), (3, 3, 3, 3, 5, 6, 7, 9) and (3, 5, 5, 5, 6, 7, 7, 10) for which the corresponding ordered tuples (1, 1, 2, 4, 5, 5, 5, 7, 9), (1, 2, 2, 3, 4, 5, 6, 7, 9), (2, 2, 4, 4, 6, 6, 6, 8, 10), (2, 6, 6, 6, 6, 6, 6, 9, 11), (3, 3, 3, 3, 5, 6, 7, 8, 10) and (3, 5, 5, 5, 6, 7, 7, 9, 11) satisfy the SCESS property.
		

Crossrefs

Programs

  • PARI
    a(n)=my(v=vector(n, i, 1), N=n^(4/3), k); while(v[#v]N, for(i=2, N, if(v[i]Balarka Sen, Aug 01 2013 */

Formula

A001055(n) <= a(n) <= A158649(n). - Balarka Sen, Aug 01 2013

Extensions

a(11)-a(15) from Balarka Sen, Aug 01 2013
a(16) from Balarka Sen, Aug 11 2013
Definition corrected by Max Alekseyev, Mar 04 2025

A245030 Divisors of 7^24 - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 24, 25, 26, 30, 32, 36, 38, 39, 40, 43, 45, 48, 50, 52, 57, 60, 64, 65, 72, 73, 75, 76, 78, 80, 86, 90, 95, 96, 100, 104, 114, 117, 120, 129, 130, 144, 146, 150, 152, 156, 160, 171, 172, 180, 181, 190
Offset: 1

Views

Author

Bruno Berselli, Jul 10 2014

Keywords

Comments

Number of divisors of k^24-1 for k = 2..10: 96 (2), 384 (3), 768 (4), 1152 (5), 512 (6), 16128 (7), 8192 (8), 14336 (9), 2048 (10).
The following 36 triangular numbers belong to this sequence: 1, 3, 6, 10, 15, 36, 45, 78, 120, 171, 190, 300, 325, 741, 780, 2080, 2628, 2850, 4560, 8256, 8385, 14706, 16290, 18528, 74691, 170820, 334153, 450775, 720600, 1664400, 4191960, 5915080, 8654880, 19068400, 1730160900, 23947653922570801800.
There are 50 divisors a(k) such that a(k) is divisible by k.
Sum( A000005(a(i))^3, i=1..16128 ) = sum( A000005(a(i)), i=1..16128 )^2, see Kordemsky in References and Barbeau et al. in Links section.

Examples

			191581231380566414400 = 2^6*3^2*5^2*13*19*43*73*181*193*409*1201.
		

References

  • Boris A. Kordemsky, The Moscow Puzzles: 359 Mathematical Recreations, C. Scribner's Sons (1972), Chapter XIII, Paragraph 349.

Crossrefs

Programs

  • Mathematica
    Divisors[7^24 - 1]
  • PARI
    divisors(7^24-1)
Showing 1-9 of 9 results.