cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A164053 Partial sums of A162255.

Original entry on oeis.org

3, 5, 11, 15, 27, 35, 59, 75, 123, 155, 251, 315, 507, 635, 1019, 1275, 2043, 2555, 4091, 5115, 8187, 10235, 16379, 20475, 32763, 40955, 65531, 81915, 131067, 163835, 262139, 327675, 524283, 655355, 1048571, 1310715, 2097147, 2621435, 4194299
Offset: 1

Views

Author

Klaus Brockhaus, Aug 08 2009

Keywords

Comments

Apparently a(n) = A094958(n+4)-5.

Crossrefs

Programs

  • Magma
    T:=[ n le 2 select 4-n else 2*Self(n-2): n in [1..39] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
    
  • Mathematica
    Accumulate[LinearRecurrence[{0,2},{3,2},50]] (* or *) LinearRecurrence[ {1,2,-2},{3,5,11},50] (* Harvey P. Dale, Aug 28 2012 *)
  • PARI
    x='x+O('x^50); Vec(x*(3+2*x)/(1-x-2*x^2+2*x^3)) \\ G. C. Greubel, Sep 09 2017

Formula

a(n) = 2*a(n-2) + 5 for n > 2; a(1) = 3, a(2) = 5.
a(n) = (13 - 3*(-1)^n)*2^(1/4*(2*n -1 +(-1)^n))/2 - 5.
G.f.: x*(3+2*x)/(1-x-2*x^2+2*x^3).
a(1)=3, a(2)=5, a(3)=11, a(n)=a(n-1)+2*a(n-2)-2*a(n-3). - Harvey P. Dale, Aug 28 2012

A078343 a(0) = -1, a(1) = 2; a(n) = 2*a(n-1) + a(n-2).

Original entry on oeis.org

-1, 2, 3, 8, 19, 46, 111, 268, 647, 1562, 3771, 9104, 21979, 53062, 128103, 309268, 746639, 1802546, 4351731, 10506008, 25363747, 61233502, 147830751, 356895004, 861620759, 2080136522, 5021893803, 12123924128, 29269742059, 70663408246, 170596558551, 411856525348
Offset: 0

Views

Author

Benoit Cloitre, Nov 22 2002

Keywords

Comments

Inverse binomial transform of -1, 1, 6, 22, 76, 260, ... (see A111566). Binomial transform of -1, 3, -2, 6, -4, 12, -8, 24, -16, ... (see A162255). - R. J. Mathar, Oct 02 2012

Examples

			G.f. = -1 + 2*x + 3*x^2 + 8*x^3 + 19*x^4 + 46*x^5 + 111*x^6 + ... - _Michael Somos_, Jun 30 2022
		

References

  • H. S. M. Coxeter, 1998, Numerical distances among the circles in a loxodromic sequence, Nieuw Arch. Wisk, 16, pp. 1-9.

Crossrefs

Programs

  • Haskell
    a078343 n = a078343_list !! n
    a078343_list = -1 : 2 : zipWith (+)
                            (map (* 2) $ tail a078343_list) a078343_list
    -- Reinhard Zumkeller, Jan 04 2013
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x)/(-1+2*x+x^2))); // G. C. Greubel, Jul 26 2018
  • Maple
    f:=proc(n) option remember; if n=0 then RETURN(-1); fi; if n=1 then RETURN(2); fi; 2*f(n-1)+f(n-2); end;
  • Mathematica
    Table[4 Fibonacci[n, 2] - Fibonacci[n + 1, 2], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 27 2016 *)
    LinearRecurrence[{2,1},{-1,2},40] (* Harvey P. Dale, Apr 15 2019 *)
  • PARI
    a(n)=([0,1;1,2]^n*[-1;2])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
    

Formula

For the unsigned version: a(1)=1; a(2)=2; a(n) = Sum_{k=2..n-1} (a(k) + a(k-1)).
a(n) is asymptotic to (1/4)*(-2+3*sqrt(2))*(1+sqrt(2))^n.
a(n) = A048746(n-3) + 2, for n > 2. - Ralf Stephan, Oct 17 2003
a(n) = 2*A000129(n) - A000129(n-1) if n > 0; abs(a(n)) = Sum_{k=0..floor(n/2)} (C(n-k-1, k) - C(n-k-1, k-1))2^(n-2k). - Paul Barry, Dec 23 2004
O.g.f.: (1-4*x)/(-1 + 2*x + x^2). - R. J. Mathar, Feb 15 2008
a(n) = 4*Pell(n) - Pell(n+1), where Pell = A000129. - Vladimir Reshetnikov, Sep 27 2016
a(n) = -(-1)^n * A048654(-n) = ( (-2+3*sqrt(2))*(1+sqrt(2))^n + (-2-3*sqrt(2))*(1-sqrt(2))^n )/4 for all n in Z. - Michael Somos, Jun 30 2022
2*a(n+1)^2 = A048655(n)^2 + (-1)^n*7. - Philippe Deléham, Mar 07 2023
E.g.f.: 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2) - exp(x)*cosh(sqrt(2)*x). - Stefano Spezia, May 26 2024

Extensions

Entry revised by N. J. A. Sloane, Apr 29 2004

A162396 a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 2.

Original entry on oeis.org

5, 2, 10, 4, 20, 8, 40, 16, 80, 32, 160, 64, 320, 128, 640, 256, 1280, 512, 2560, 1024, 5120, 2048, 10240, 4096, 20480, 8192, 40960, 16384, 81920, 32768, 163840, 65536, 327680, 131072, 655360, 262144, 1310720, 524288, 2621440, 1048576, 5242880
Offset: 1

Views

Author

Klaus Brockhaus, Jul 02 2009

Keywords

Comments

Binomial transform is A162268. Fifth binomial transform is A083880 without initial 1.

Crossrefs

Programs

  • Magma
    [ n le 2 select 8-3*n else 2*Self(n-2): n in [1..41] ];
    
  • Magma
    [Floor((3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n))):  n in [1..50]]; // Vincenzo Librandi, Oct 09 2017
  • Maple
    A162396:=n->(3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n)): seq(A162396(n), n=1..60); # Wesley Ivan Hurt, Oct 08 2017
  • Mathematica
    CoefficientList[Series[(5 + 2*x)/(1 - 2*x^2), {x, 0, 40}], x] (* Wesley Ivan Hurt, Oct 08 2017 *)
    RecurrenceTable[{a[1]==5, a[2]==2, a[n]==2 a[n-2]}, a, {n, 40}] (* Vincenzo Librandi, Oct 09 2017 *)

Formula

a(n) = (3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n)).
G.f.: x*(5+2*x)/(1-2*x^2).

Extensions

G.f. corrected, formula simplified, comment added by Klaus Brockhaus, Sep 18 2009

A164073 a(n) = 2*a(n-2) for n > 2; a(1) = 1, a(2) = 3.

Original entry on oeis.org

1, 3, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576, 3145728, 2097152, 6291456
Offset: 1

Views

Author

Klaus Brockhaus, Aug 09 2009

Keywords

Comments

Interleaving of A000079 and A007283.
Binomial transform is A048654. Second binomial transform is A111567. Third binomial transform is A081179 without initial 0. Fourth binomial transform is A164072. Fifth binomial transform is A164031.
Absolute second differences are the sequence itself. - Eric Angelini, Jul 30 2013
Least number having n - 1 Gaussian prime factors, counted with multiplicity, excluding units. See A239628 for a similar sequence. - T. D. Noe, Mar 31 2014
Writing the prime factorizations of the terms of this sequence, the exponents of prime factor 2 give the integers repeated (A004526), while the exponents of prime factor 3 give the sequence of alternating 0's and 1's (A000035). - Alonso del Arte, Nov 30 2016

Crossrefs

Programs

  • Magma
    [ n le 2 select 2*n-1 else 2*Self(n-2): n in [1..42] ];
    
  • Mathematica
    terms = 50; CoefficientList[Series[x * (1 + 3 * x)/(1 - 2 * x^2), {x, 0, terms}], x] (* T. D. Noe, Mar 31 2014 *)
    Flatten[Table[{2^n, 3 * 2^n}, {n, 0, 31}]] (* Alonso del Arte, Nov 30 2016 *)
    CoefficientList[Series[x (1 + 3 x)/(1 - 2 x^2), {x, 0, 44}], x] (* Michael De Vlieger, Dec 13 2016 *)
  • PARI
    a(n) = (5 + (-1)^n) * 2^((2*n-9)\/4)
    
  • PARI
    Vec(x*(1+3*x)/(1-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Dec 13 2016

Formula

a(n) = (5 + (-1)^n) * 2^(1/4 * (2*n - 1 + (-1)^n))/4.
G.f.: x*(1 + 3 * x)/(1 - 2 * x^2).
a(n) = A074323(n), n>=1.
a(n) = A162255(n-1), n>=2.
a(n) = A072946(n-2), n > 2. - R. J. Mathar, Aug 17 2009
a(n+3) = a(n + 2) * a(n + 1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (2/3)a(n - 1) for odd n > 1, a(n) = 3a(n - 1) for even n. - Alonso del Arte, Nov 30 2016

A164682 a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 8.

Original entry on oeis.org

5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560, 4096, 5120, 8192, 10240, 16384, 20480, 32768, 40960, 65536, 81920, 131072, 163840, 262144, 327680, 524288, 655360, 1048576, 1310720, 2097152, 2621440, 4194304
Offset: 1

Views

Author

Klaus Brockhaus, Aug 21 2009

Keywords

Comments

Interleaving of A020714 and A000079 without initial terms 1, 2, 4.
First differences are in A162255.
Binomial transform is A135532 without initial terms -1, 3. Fourth binomial transform is A164537.

Crossrefs

Equals A094958 (numbers of the form 2^n or 5*2^n) without initial terms 1, 2, 4.
Cf. A020714 (5*2^n), A000079 (powers of 2), A162255, A135532, A164537.

Programs

  • Magma
    [ n le 2 select 2+3*n else 2*Self(n-2): n in [1..40] ];
  • Mathematica
    LinearRecurrence[{0,2},{5,8},60] (* Harvey P. Dale, Jul 20 2022 *)

Formula

a(n) = (9-(-1)^n)*2^(1/4*(2*n-5+(-1)^n)).
G.f.: x*(5+8*x)/(1-2*x^2).

A072946 Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(2,2), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.

Original entry on oeis.org

1, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576, 3145728, 2097152
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Instead of listing the coefficients of the highest power of q in each nu(n), if we listed the coefficients of the smallest power of q (i.e., constant terms), we get a weighted Fibonacci numbers described by f(0)=1, f(1)=1, for n>=2, f(n)=2f(n-1)+2f(n-2).

Examples

			nu(0)=1,
nu(1)=2,
nu(2)=6,
nu(3)=16+4q,
nu(4)=44+20q+12q^2,
nu(5)=120+80q+64q^2+40q^3+8q^4,
nu(6)=328+288q+280q^2+232q^3+168q^4+64q^5+24q^6.
By listing the coefficients of the highest power in each nu(n) we get 1,2,6,4,12,8,24,...
		

Crossrefs

Essentially the same as A162255 and A164073.
Cf. A002605.

Programs

  • Mathematica
    LinearRecurrence[{0,2},{1,2,6},50] (* Harvey P. Dale, Dec 31 2015 *)

Formula

For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2)=b^2+lambda and for n>=3, t(n)=lambda*T(n-2).
O.g.f.: (1+2*x+4*x^2)/(1-2*x^2). - R. J. Mathar, Dec 05 2007

Extensions

More terms from R. J. Mathar, Dec 05 2007

A161938 a(n) = ((3+sqrt(2))*(2+sqrt(2))^n + (3-sqrt(2))*(2-sqrt(2))^n)/2.

Original entry on oeis.org

3, 8, 26, 88, 300, 1024, 3496, 11936, 40752, 139136, 475040, 1621888, 5537472, 18906112, 64549504, 220385792, 752444160, 2569005056, 8771131904, 29946517504, 102243806208, 349082189824, 1191841146880, 4069200207872, 13893118537728, 47434073735168
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009, Jun 29 2009

Keywords

Comments

Second binomial transform of A162255.

Crossrefs

Programs

  • GAP
    a:=[3,8];; for n in [3..25] do a[n]:=4*a[n-1]-2*a[n-2]; od; a; # Muniru A Asiru, Sep 28 2018
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((3+r)*(2+r)^n+(3-r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009
    
  • Magma
    I:=[3,8]; [n le 2 select I[n] else 4*Self(n-1) - 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 28 2018
    
  • Maple
    seq(coeff(series((3-4*x)/(1-4*x+2*x^2),x,n+1), x, n), n = 0..25); # Muniru A Asiru, Sep 28 2018
  • Mathematica
    CoefficientList[Series[(3-4*x)/(1-4*x+2*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 28 2018 *)
  • PARI
    my(x='x+O('x^50)); Vec((3-4*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Sep 28 2018
    

Formula

a(n) = 4*a(n-1) - 2*a(n-2) for n>1; a(0) = 3; a(1) = 8.
G.f.: (3-4*x)/(1-4*x+2*x^2).
From G. C. Greubel, Sep 28 2018: (Start)
a(2*n) = 2^(n-1) * (Q(2*n +1) + 2*Q(2*n)), Q(m) = Pell-Lucas numbers = A002203(m).
a(2*n+1) = 2^(n-1) * (P(2*n+2) + 2*P(2*n+1)), P(m) = Pell numbers = A000129(m). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 01 2009

A161939 a(n) = ((3+sqrt(2))*(4+sqrt(2))^n + (3-sqrt(2))*(4-sqrt(2))^n)/2.

Original entry on oeis.org

3, 14, 70, 364, 1932, 10360, 55832, 301616, 1631280, 8827616, 47783008, 258677440, 1400457408, 7582175104, 41050997120, 222257525504, 1203346244352, 6515164597760, 35274469361152, 190983450520576, 1034025033108480
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009

Keywords

Comments

Fourth binomial transform of A162255.

Crossrefs

Cf. A162255, A161940 (Fifth binomial transform of A162255).

Programs

  • GAP
    a := [3, 14];; for n in [3..10^2] do a[n] := 8*a[n-1] - 14*a[n-2]; od; a; # Muniru A Asiru, Feb 02 2018
    
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((3+r)*(4+r)^n+(3-r)*(4-r)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009
    
  • Maple
    seq(simplify(((3+sqrt(2))*(4+sqrt(2))^n+(3-sqrt(2))*(4-sqrt(2))^n)*1/2), n = 0 .. 20); # Emeric Deutsch, Jun 28 2009
  • Mathematica
    LinearRecurrence[{8,-14},{3,14},30] (* Harvey P. Dale, May 10 2012 *)
  • PARI
    x='x+O('x^30); Vec((3-10*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Aug 17 2018

Formula

a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 3; a(1) = 14.
G.f.: (3-10*x)/(1-8*x+14*x^2).

Extensions

Definition corrected by Emeric Deutsch, Jun 28 2009
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 01 2009
Extended by Emeric Deutsch, Jun 28 2009

A161940 a(n) = ((3+sqrt(2))*(5+sqrt(2))^n + (3-sqrt(2))*(5-sqrt(2))^n)/2.

Original entry on oeis.org

3, 17, 101, 619, 3867, 24433, 155389, 991931, 6345363, 40639217, 260448821, 1669786219, 10707539307, 68670310033, 440429696269, 2824879831931, 18118915305123, 116216916916817, 745434117150341, 4781352082416619
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009

Keywords

Comments

Fifth binomial transform of A162255.

Crossrefs

Cf. A162255, A161939 (fourth binomial transform of A162255).

Programs

  • GAP
    a := [3, 17];; for n in [3..10^2] do a[n] := 10*a[n-1] - 23*a[n-2]; od; a; # Muniru A Asiru, Feb 02 2018
    
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((3+r)*(5+r)^n+(3-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009
    
  • Maple
    a[0] := 3: a[1] := 17: for n from 2 to 20 do a[n] := 10*a[n-1]-23*a[n-2] end do: seq(a[n], n = 0 .. 20); # Emeric Deutsch, Jun 27 2009
  • Mathematica
    LinearRecurrence[{10,-23},{3,17},30] (* Harvey P. Dale, Oct 05 2012 *)
  • PARI
    x='x+O('x^30); Vec((3-13*x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Aug 17 2018

Formula

a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 3, a(1) = 17.
G.f.: (3-13*x)/(1-10*x+23*x^2).

Extensions

Edited and extended beyond a(4) by Klaus Brockhaus, Jul 01 2009
Extended by Emeric Deutsch, Jun 27 2009

A164120 Partial sums of A162396.

Original entry on oeis.org

5, 7, 17, 21, 41, 49, 89, 105, 185, 217, 377, 441, 761, 889, 1529, 1785, 3065, 3577, 6137, 7161, 12281, 14329, 24569, 28665, 49145, 57337, 98297, 114681, 196601, 229369, 393209, 458745, 786425, 917497, 1572857, 1835001, 3145721, 3670009
Offset: 1

Views

Author

Klaus Brockhaus, Aug 10 2009

Keywords

Crossrefs

Cf. A162396, A164053 (partial sums of A162255).

Programs

  • Magma
    T:=[ n le 2 select 8-3*n else 2*Self(n-2): n in [1..38] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
    
  • Mathematica
    Rest[CoefficientList[Series[x*(5 + 2*x)/((1 - x)*(1 - 2*x^2)), {x,0,50}], x]] (* or *) LinearRecurrence[{1,2,-2}, {5,7,17}, 50] (* G. C. Greubel, Sep 12 2017 *)
  • PARI
    x='x+O('x^50); Vec(x*(5+2*x)/((1-x)*(1-2*x^2))) \\ G. C. Greubel, Sep 12 2017

Formula

a(n) = 2*a(n-2) + 7 for n > 2; a(1) = 5, a(2) = 7.
a(n) = (19 - 5*(-1)^n)*2^((2*n-1+(-1)^n)/4)/2 - 7.
G.f.: x*(5+2*x)/((1-x)*(1-2*x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3). - G. C. Greubel, Sep 12 2017
Showing 1-10 of 10 results.