Original entry on oeis.org
3, 5, 11, 15, 27, 35, 59, 75, 123, 155, 251, 315, 507, 635, 1019, 1275, 2043, 2555, 4091, 5115, 8187, 10235, 16379, 20475, 32763, 40955, 65531, 81915, 131067, 163835, 262139, 327675, 524283, 655355, 1048571, 1310715, 2097147, 2621435, 4194299
Offset: 1
-
T:=[ n le 2 select 4-n else 2*Self(n-2): n in [1..39] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
-
Accumulate[LinearRecurrence[{0,2},{3,2},50]] (* or *) LinearRecurrence[ {1,2,-2},{3,5,11},50] (* Harvey P. Dale, Aug 28 2012 *)
-
x='x+O('x^50); Vec(x*(3+2*x)/(1-x-2*x^2+2*x^3)) \\ G. C. Greubel, Sep 09 2017
A078343
a(0) = -1, a(1) = 2; a(n) = 2*a(n-1) + a(n-2).
Original entry on oeis.org
-1, 2, 3, 8, 19, 46, 111, 268, 647, 1562, 3771, 9104, 21979, 53062, 128103, 309268, 746639, 1802546, 4351731, 10506008, 25363747, 61233502, 147830751, 356895004, 861620759, 2080136522, 5021893803, 12123924128, 29269742059, 70663408246, 170596558551, 411856525348
Offset: 0
G.f. = -1 + 2*x + 3*x^2 + 8*x^3 + 19*x^4 + 46*x^5 + 111*x^6 + ... - _Michael Somos_, Jun 30 2022
- H. S. M. Coxeter, 1998, Numerical distances among the circles in a loxodromic sequence, Nieuw Arch. Wisk, 16, pp. 1-9.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- H. S. M. Coxeter, Numerical distances among the spheres in a loxodromic sequence, Math. Intell. 19(4) 1997 pp. 41-47. See page 41. See pp. 46-47.
- Tanya Khovanova, Recursive Sequences.
- José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv:1212.1368 [cs.DM], 2012.
- Index entries for linear recurrences with constant coefficients, signature (2,1).
-
a078343 n = a078343_list !! n
a078343_list = -1 : 2 : zipWith (+)
(map (* 2) $ tail a078343_list) a078343_list
-- Reinhard Zumkeller, Jan 04 2013
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x)/(-1+2*x+x^2))); // G. C. Greubel, Jul 26 2018
-
f:=proc(n) option remember; if n=0 then RETURN(-1); fi; if n=1 then RETURN(2); fi; 2*f(n-1)+f(n-2); end;
-
Table[4 Fibonacci[n, 2] - Fibonacci[n + 1, 2], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 27 2016 *)
LinearRecurrence[{2,1},{-1,2},40] (* Harvey P. Dale, Apr 15 2019 *)
-
a(n)=([0,1;1,2]^n*[-1;2])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
A162396
a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 2.
Original entry on oeis.org
5, 2, 10, 4, 20, 8, 40, 16, 80, 32, 160, 64, 320, 128, 640, 256, 1280, 512, 2560, 1024, 5120, 2048, 10240, 4096, 20480, 8192, 40960, 16384, 81920, 32768, 163840, 65536, 327680, 131072, 655360, 262144, 1310720, 524288, 2621440, 1048576, 5242880
Offset: 1
-
[ n le 2 select 8-3*n else 2*Self(n-2): n in [1..41] ];
-
[Floor((3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n))): n in [1..50]]; // Vincenzo Librandi, Oct 09 2017
-
A162396:=n->(3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n)): seq(A162396(n), n=1..60); # Wesley Ivan Hurt, Oct 08 2017
-
CoefficientList[Series[(5 + 2*x)/(1 - 2*x^2), {x, 0, 40}], x] (* Wesley Ivan Hurt, Oct 08 2017 *)
RecurrenceTable[{a[1]==5, a[2]==2, a[n]==2 a[n-2]}, a, {n, 40}] (* Vincenzo Librandi, Oct 09 2017 *)
G.f. corrected, formula simplified, comment added by
Klaus Brockhaus, Sep 18 2009
A164073
a(n) = 2*a(n-2) for n > 2; a(1) = 1, a(2) = 3.
Original entry on oeis.org
1, 3, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576, 3145728, 2097152, 6291456
Offset: 1
-
[ n le 2 select 2*n-1 else 2*Self(n-2): n in [1..42] ];
-
terms = 50; CoefficientList[Series[x * (1 + 3 * x)/(1 - 2 * x^2), {x, 0, terms}], x] (* T. D. Noe, Mar 31 2014 *)
Flatten[Table[{2^n, 3 * 2^n}, {n, 0, 31}]] (* Alonso del Arte, Nov 30 2016 *)
CoefficientList[Series[x (1 + 3 x)/(1 - 2 x^2), {x, 0, 44}], x] (* Michael De Vlieger, Dec 13 2016 *)
-
a(n) = (5 + (-1)^n) * 2^((2*n-9)\/4)
-
Vec(x*(1+3*x)/(1-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Dec 13 2016
A164682
a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 8.
Original entry on oeis.org
5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560, 4096, 5120, 8192, 10240, 16384, 20480, 32768, 40960, 65536, 81920, 131072, 163840, 262144, 327680, 524288, 655360, 1048576, 1310720, 2097152, 2621440, 4194304
Offset: 1
Equals
A094958 (numbers of the form 2^n or 5*2^n) without initial terms 1, 2, 4.
-
[ n le 2 select 2+3*n else 2*Self(n-2): n in [1..40] ];
-
LinearRecurrence[{0,2},{5,8},60] (* Harvey P. Dale, Jul 20 2022 *)
A072946
Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(2,2), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.
Original entry on oeis.org
1, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576, 3145728, 2097152
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
nu(0)=1,
nu(1)=2,
nu(2)=6,
nu(3)=16+4q,
nu(4)=44+20q+12q^2,
nu(5)=120+80q+64q^2+40q^3+8q^4,
nu(6)=328+288q+280q^2+232q^3+168q^4+64q^5+24q^6.
By listing the coefficients of the highest power in each nu(n) we get 1,2,6,4,12,8,24,...
A161938
a(n) = ((3+sqrt(2))*(2+sqrt(2))^n + (3-sqrt(2))*(2-sqrt(2))^n)/2.
Original entry on oeis.org
3, 8, 26, 88, 300, 1024, 3496, 11936, 40752, 139136, 475040, 1621888, 5537472, 18906112, 64549504, 220385792, 752444160, 2569005056, 8771131904, 29946517504, 102243806208, 349082189824, 1191841146880, 4069200207872, 13893118537728, 47434073735168
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009, Jun 29 2009
-
a:=[3,8];; for n in [3..25] do a[n]:=4*a[n-1]-2*a[n-2]; od; a; # Muniru A Asiru, Sep 28 2018
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((3+r)*(2+r)^n+(3-r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009
-
I:=[3,8]; [n le 2 select I[n] else 4*Self(n-1) - 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 28 2018
-
seq(coeff(series((3-4*x)/(1-4*x+2*x^2),x,n+1), x, n), n = 0..25); # Muniru A Asiru, Sep 28 2018
-
CoefficientList[Series[(3-4*x)/(1-4*x+2*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 28 2018 *)
-
my(x='x+O('x^50)); Vec((3-4*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Sep 28 2018
A161939
a(n) = ((3+sqrt(2))*(4+sqrt(2))^n + (3-sqrt(2))*(4-sqrt(2))^n)/2.
Original entry on oeis.org
3, 14, 70, 364, 1932, 10360, 55832, 301616, 1631280, 8827616, 47783008, 258677440, 1400457408, 7582175104, 41050997120, 222257525504, 1203346244352, 6515164597760, 35274469361152, 190983450520576, 1034025033108480
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009
-
a := [3, 14];; for n in [3..10^2] do a[n] := 8*a[n-1] - 14*a[n-2]; od; a; # Muniru A Asiru, Feb 02 2018
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((3+r)*(4+r)^n+(3-r)*(4-r)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009
-
seq(simplify(((3+sqrt(2))*(4+sqrt(2))^n+(3-sqrt(2))*(4-sqrt(2))^n)*1/2), n = 0 .. 20); # Emeric Deutsch, Jun 28 2009
-
LinearRecurrence[{8,-14},{3,14},30] (* Harvey P. Dale, May 10 2012 *)
-
x='x+O('x^30); Vec((3-10*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Aug 17 2018
A161940
a(n) = ((3+sqrt(2))*(5+sqrt(2))^n + (3-sqrt(2))*(5-sqrt(2))^n)/2.
Original entry on oeis.org
3, 17, 101, 619, 3867, 24433, 155389, 991931, 6345363, 40639217, 260448821, 1669786219, 10707539307, 68670310033, 440429696269, 2824879831931, 18118915305123, 116216916916817, 745434117150341, 4781352082416619
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009
-
a := [3, 17];; for n in [3..10^2] do a[n] := 10*a[n-1] - 23*a[n-2]; od; a; # Muniru A Asiru, Feb 02 2018
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((3+r)*(5+r)^n+(3-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009
-
a[0] := 3: a[1] := 17: for n from 2 to 20 do a[n] := 10*a[n-1]-23*a[n-2] end do: seq(a[n], n = 0 .. 20); # Emeric Deutsch, Jun 27 2009
-
LinearRecurrence[{10,-23},{3,17},30] (* Harvey P. Dale, Oct 05 2012 *)
-
x='x+O('x^30); Vec((3-13*x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Aug 17 2018
Original entry on oeis.org
5, 7, 17, 21, 41, 49, 89, 105, 185, 217, 377, 441, 761, 889, 1529, 1785, 3065, 3577, 6137, 7161, 12281, 14329, 24569, 28665, 49145, 57337, 98297, 114681, 196601, 229369, 393209, 458745, 786425, 917497, 1572857, 1835001, 3145721, 3670009
Offset: 1
-
T:=[ n le 2 select 8-3*n else 2*Self(n-2): n in [1..38] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
-
Rest[CoefficientList[Series[x*(5 + 2*x)/((1 - x)*(1 - 2*x^2)), {x,0,50}], x]] (* or *) LinearRecurrence[{1,2,-2}, {5,7,17}, 50] (* G. C. Greubel, Sep 12 2017 *)
-
x='x+O('x^50); Vec(x*(5+2*x)/((1-x)*(1-2*x^2))) \\ G. C. Greubel, Sep 12 2017
Showing 1-10 of 10 results.
Comments