cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A170798 a(n) = n^10*(n^6 + 1)/2.

Original entry on oeis.org

0, 1, 33280, 21552885, 2148007936, 76298828125, 1410585186816, 16616606522425, 140738025226240, 926511837818121, 5000005000000000, 22974877900498381, 92442160406200320, 332708373520835845, 1088976813532013056
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

a(n) is number of distinct 4 X 4 matrices with entries in {1,2,...,n} when a matrix and its transpose are considered equivalent. - David Nacin, Feb 20 2017
Cycle index of this S2 group action is (s(2)^6s(1)^4+s(1)^16)/2. - David Nacin, Feb 20 2017

Examples

			a(2) = 33280 is the number of inequivalent 4 X 4 binary matrices up to taking the transpose. - _David Nacin_, Feb 20 2017
		

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), this sequence (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..20], n-> n^10*(n^6 +1)/2); # G. C. Greubel, Oct 11 2019
  • Magma
    [n^10*(n^6+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^6+1)/2, n=0..20); # G. C. Greubel, Oct 12 2019
  • Mathematica
    Table[n^10*(n^6+1)/2,{n,0,30}] (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    concat(0, Vec(-x*(x +1)*(x^14 +33262*x^13 +20953999*x^12 +1765180292*x^11 +40926077261*x^10 +350131349138*x^9 +1253612167971*x^8 +1937785948152*x^7 +1253612167971*x^6 +350131349138*x^5 +40926077261*x^4 +1765180292*x^3 +20953999*x^2 +33262*x +1) / (x -1)^17 + O(x^30))) \\ Colin Barker, Jul 11 2015
    
  • PARI
    vector(21, m, (m-1)^10*((m-1)^6 + 1)/2) \\ G. C. Greubel, Oct 11 2019
    
  • Sage
    [n^10*(n^6 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
    

Formula

G.f.: x*(x+1)*(x^14 + 33262*x^13 + 20953999*x^12 + 1765180292*x^11 + 40926077261*x^10 + 350131349138*x^9 + 1253612167971*x^8 + 1937785948152*x^7 + 1253612167971*x^6 + 350131349138*x^5 + 40926077261*x^4 + 1765180292*x^3 + 20953999*x^2 + 33262*x + 1)/(1-x)^17. - Colin Barker, Jul 11 2015
E.g.f.: x*(2 + 33278*x + 7151016*x^2 + 171833006*x^3 + 1096233075*x^4 + 2734949385*x^5 + 3281888484*x^6 + 2141764803*x^7 + 820784295*x^8 + 193754991*x^9 + 28936908*x^10 + 2757118*x^11 + 165620*x^12 + 6020*x^13 + 120*x^14 + x^15)*exp(x)/2. - G. C. Greubel, Oct 12 2019

A170801 a(n) = n^10*(n^9 + 1)/2.

Original entry on oeis.org

0, 1, 262656, 581160258, 137439477760, 9536748046875, 304679900238336, 5699447733924196, 72057594574798848, 675425860579888245, 5000000005000000000, 30579545237175985446, 159739999716270145536
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

Number of unoriented rows of length 19 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=262656, there are 2^19=524288 oriented arrangements of two colors. Of these, 2^10=1024 are achiral. That leaves (524288-1024)/2=261632 chiral pairs. Adding achiral and chiral, we get 262656. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 19 of A277504.
Cf. A010807 (oriented), A008454 (achiral).
Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), this sequence (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..30], n -> n^10*(n^9+1)/2); # G. C. Greubel, Nov 15 2018
  • Magma
    [n^10*(n^9+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^9 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[(n^19 + n^10)/2, {n,0,30}] (* Robert A. Russell, Nov 13 2018 *)
  • PARI
    vector(30, n, n--; n^10*(n^9+1)/2) \\ G. C. Greubel, Nov 15 2018
    
  • Sage
    [n^10*(n^9+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
    

Formula

From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010807(n) + A008454(n)) / 2 = (n^19 + n^10) / 2.
G.f.: (Sum_{j=1..19} S2(19,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..18} A145882(19,k) * x^k / (1-x)^20.
E.g.f.: (Sum_{k=1..19} S2(19,k)*x^k + Sum_{k=1..10} S2(10,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>19, a(n) = Sum_{j=1..20} -binomial(j-21,j) * a(n-j). (End)

A170802 a(n) = n^10*(n^10 + 1)/2.

Original entry on oeis.org

0, 1, 524800, 1743421725, 549756338176, 47683720703125, 1828079250264576, 39896133290043625, 576460752840294400, 6078832731271856601, 50000000005000000000, 336374997479248716901, 1916879996254696243200
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

By definition, all terms are triangular numbers. - Harvey P. Dale, Aug 12 2012
Number of unoriented rows of length 20 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=524800, there are 2^20=1048576 oriented arrangements of two colors. Of these, 2^10=1024 are achiral. That leaves (1048576-1024)/2=523776 chiral pairs. Adding achiral and chiral, we get 524800. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 20 of A277504.
Cf. A010808 (oriented), A008454 (achiral).
Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170896 (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), this sequence (m=10).

Programs

  • GAP
    List([0..30], n -> n^10*(n^10+1)/2); # G. C. Greubel, Nov 15 2018
    
  • Magma
    [n^10*(n^10+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^10 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    n10[n_]:=Module[{c=n^10},(c(c+1))/2];Array[n10,15,0] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    vector(30, n, n--; n^10*(n^10+1)/2) \\ G. C. Greubel, Nov 15 2018
    
  • Python
    for n in range(0,20): print(int(n**10*(n**10 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
  • Sage
    [n^10*(n^10+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
    

Formula

From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010808(n) + A008454(n)) / 2 = (n^20 + n^10) / 2.
G.f.: (Sum_{j=1..20} S2(20,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..19} A145882(20,k) * x^k / (1-x)^21.
E.g.f.: (Sum_{k=1..20} S2(20,k)*x^k + Sum_{k=1..10} S2(10,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>20, a(n) = Sum_{j=1..21} -binomial(j-22,j) * a(n-j). (End)

A170797 a(n) = n^10*(n^5+1)/2.

Original entry on oeis.org

0, 1, 16896, 7203978, 537395200, 15263671875, 235122725376, 2373921992596, 17592722915328, 102947309439525, 500005000000000, 2088637053420126, 7703541745975296, 25593015436291303, 77784192406233600
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), this sequence (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

Formula

G.f.: x*(15872*x^13 +6890977*x^12 +423932400*x^11 +7520863426*x^10 +51389080880*x^9 +155692452591*x^8 +223769408736*x^7 +155695145820*x^6 +51387918048*x^5 +7520366095*x^4 +424158512*x^3 +6933762*x^2 +16880*x +1) / (x-1)^16. - Colin Barker, Nov 01 2014
a(n) = 16*a(n-1) - 120*a(n-2) + 560*a(n-3) - 1820*a(n-4) + 4368*a(n-5) - 8008*a(n-6) + 11440*a(n-7) - 12870*a(n-8) + 11440*a(n-9) - 8008*a(n-10) + 4368*a(n-11) - 1820*a(n-12) + 560*a(n-13) - 120*a(n-14) + 16*a(n-15) - a(n-16) for n > 15. - Wesley Ivan Hurt, Aug 10 2016
E.g.f.: x*(2 +16894*x +2384431*x^2 +42390055*x^3 +210809445*x^4 + 420716100*x^5 +408747213*x^6 +216628590*x^7 +67128535*x^8 +12662651*x^9 +1479478*x^10 +106470*x^11 +4550*x^12 +105*x^13 +x^14)*exp(x)/2. - G. C. Greubel, Oct 11 2019

A170799 a(n) = n^10*(n^7 + 1)/2.

Original entry on oeis.org

0, 1, 66048, 64599606, 8590458880, 381474609375, 8463359955456, 116315398231228, 1125900443713536, 8338592593225485, 50000005000000000, 252723527218359186, 1109305584328900608, 4325208028619914891, 15245673509292925440, 49263062956171875000, 147573953139432226816
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), A170798 (m=6), this sequence (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..20], n-> n^10*(n^7 +1)/2); # G. C. Greubel, Oct 11 2019
  • Magma
    [n^10*(n^7+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^7 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[n^10(n^7+1)/2,{n,0,20}] (* Harvey P. Dale, Aug 27 2013 *)
  • PARI
    vector(21, m, (m-1)^10*((m-1)^7 + 1)/2) \\ G. C. Greubel, Oct 11 2019
    
  • Sage
    [n^10*(n^7 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
    

Formula

G.f.: x*(65024*x^15 + 63370125*x^14 + 7437628950*x^13 + 236677103915*x^12 + 2858645957220*x^11 + 15527824213413*x^10 + 41568614867330*x^9 + 57445190329275*x^8 + 41568608318040*x^7 + 15527828734975*x^6 + 2858646015162*x^5 + 236676197145*x^4 + 7437770500*x^3 + 63410895*x^2 + 66030*x + 1)/(x-1)^18. - Colin Barker, Feb 24 2013
E.g.f.: x*(2 + 66046*x + 21467155*x^2 + 694371395*x^3 + 5652794176*x^4 + 17505772725*x^5 + 25708110666*x^6 + 20415995778*x^7 + 9528822348*x^8 + 2758334151*x^9 + 512060978*x^10 + 62022324*x^11 + 4910178*x^12 + 249900*x^13 + 7820*x^14 + 136*x^15 + x^16)*exp(x)/2. - G. C. Greubel, Oct 12 2019

A170800 a(n) = n^10*(n^8 + 1)/2.

Original entry on oeis.org

0, 1, 131584, 193739769, 34360262656, 1907353515625, 50780008567296, 814206940192849, 9007199791611904, 75047319391891761, 500000005000000000, 2779958669714828041, 13311666671401304064, 56227703544907942489
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), this sequence (m=8), A170801 (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..20], n-> n^10*(n^8 +1)/2); # G. C. Greubel, Oct 11 2019
  • Magma
    [n^10*(n^8+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^8 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[n^10 (n^8+1)/2,{n,0,20}] (* Harvey P. Dale, Jul 14 2013 *)
  • PARI
    vector(21, m, (m-1)^10*((m-1)^8 + 1)/2) \\ G. C. Greubel, Oct 11 2019
    
  • Sage
    [n^10*(n^8 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
    

Formula

G.f.: x*(1 + 131565*x + 191239844*x^2 + 30701706940*x^3 + 1287510524640*x^4 + 20228672856392*x^5 + 142998539385460*x^6 + 503354978422188*x^7 + 932692832164970*x^8 + 932692832164970*x^9 + 503354978422188*x^10 + 142998539385460*x^11 + 20228672856392*x^12 + 1287510524640*x^13 + 30701706940*x^14 +191239844*x^15 + 131565*x^16 + x^17)/(1-x)^19. - Harvey P. Dale, Jul 14 2013
E.g.f.: x*(2 + 131582*x + 64448340*x^2 + 2798841090*x^3 + 28958138070*x^4 + 110687273866*x^5 + 197462489280*x^6 + 189036065760*x^7 + 106175395800*x^8 + 37112163804*x^9 + 8391004908*x^10 + 1256328866*x^11 + 125854638*x^12 + 8408778*x^13 + 367200*x^14 + 9996*x^15 + 153*x^16 + x^17)*exp(x)/2. - G. C. Greubel, Oct 12 2019

A170796 a(n) = n^10*(n^4 + 1)/2.

Original entry on oeis.org

0, 1, 8704, 2421009, 134742016, 3056640625, 39212315136, 339252774049, 2199560126464, 11440139619681, 50005000000000, 189887885503921, 641990190956544, 1968757122095569, 5556148040106496, 14596751337890625
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), this sequence (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..20], n-> n^10*(n^4 +1)/2); # G. C. Greubel, Oct 11 2019
  • Magma
    [n^10*(n^4+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
    
  • Maple
    seq(n^10*(n^4 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[n^10*(n^4 +1)/2, {n,0,20}] (* G. C. Greubel, Oct 11 2019 *)
  • PARI
    vector(21, m, (m-1)^10*((m-1)^4 + 1)/2) \\ G. C. Greubel, Oct 11 2019
    
  • Sage
    [n^10*(n^4 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
    

Formula

From G. C. Greubel, Oct 11 2019: (Start)
G.f.: x*(1 +8689*x +2290554*x^2 +99340346*x^3 +1285757375*x^4 +6420936303*x^5 +13986239532*x^6 +13986239532*x^7 +6420936303*x^8 +1285757375*x^9 +99340346*x^10 +2290554*x^11 +8689*x^12 +x^13)/(1-x)^15.
E.g.f.: x*(2 +8702*x +798300*x^2 +10425850*x^3 +40117560*x^4 +63459200*x^5 +49335160*x^6 +20913070*x^7 +5135175*x^8 +752753*x^9 + 66066*x^10 +3367*x^11 +91*x^12 +x^13)*exp(x)/2. (End)

A158497 Triangle T(n,k) formed by the coordination sequences and the number of leaves for trees.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 12, 1, 4, 12, 36, 108, 1, 5, 20, 80, 320, 1280, 1, 6, 30, 150, 750, 3750, 18750, 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890
Offset: 0

Views

Author

Thomas Wieder, Mar 20 2009

Keywords

Comments

Consider the k-fold Cartesian products CP(n,k) of the vector A(n) = [1, 2, 3, ..., n].
An element of CP(n,k) is a n-tuple T_t of the form T_t = [i_1, i_2, i_3, ..., i_k] with t=1, .., n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j = i_(j+1): T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j = i_(j+1)).
The test on i_j > i_(j+1) generates A158498. One gets the Pascal triangle A007318 if the indicator function tests whether for any two i_j, i_(j+1) in T_t one has i_j >= i_(j+1).
Use of other indicator functions can also calculate the Bell numbers A000110, A000045 or A000108.

Examples

			Array, A(n, k) = n*(n-1)^(k-1) for n > 1, A(n, k) = 1 otherwise, begins as:
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  2,   2,    2,     2,      2,       2,        2,        2, ... A040000;
  1,  3,   6,   12,    24,     48,      96,      192,      384, ... A003945;
  1,  4,  12,   36,   108,    324,     972,     2916,     8748, ... A003946;
  1,  5,  20,   80,   320,   1280,    5120,    20480,    81920, ... A003947;
  1,  6,  30,  150,   750,   3750,   18750,    93750,   468750, ... A003948;
  1,  7,  42,  252,  1512,   9072,   54432,   326592,  1959552, ... A003949;
  1,  8,  56,  392,  2744,  19208,  134456,   941192,  6588344, ... A003950;
  1,  9,  72,  576,  4608,  36864,  294912,  2359296, 18874368, ... A003951;
  1, 10,  90,  810,  7290,  65610,  590490,  5314410, 47829690, ... A003952;
  1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, ............. A003953;
  1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, ............. A003954;
  1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, ............. A170732;
  ... ;
The triangle begins as:
  1
  1, 1;
  1, 2,  2;
  1, 3,  6,  12;
  1, 4, 12,  36,  108;
  1, 5, 20,  80,  320,  1280;
  1, 6, 30, 150,  750,  3750,  18750;
  1, 7, 42, 252, 1512,  9072,  54432, 326592;
  1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344;
  ...;
T(3,3) = 12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3 = 27 triples in the CP(3,3).
		

Crossrefs

Array rows n: A170733 (n=14), ..., A170769 (n=50).
Columns k: A000012(n) (k=0), A000027(n) (k=1), A002378(n-1) (k=2), A011379(n-1) (k=3), A179824(n) (k=4), A101362(n-1) (k=5), 2*A168351(n-1) (k=6), 2*A168526(n-1) (k=7), 2*A168635(n-1) (k=8), 2*A168675(n-1) (k=9), 2*A170783(n-1) (k=10), 2*A170793(n-1) (k=11).
Diagonals k: A055897 (k=n), A055541 (k=n-1), A373395 (k=n-2), A379612 (k=n-3).
Sums: (-1)^n*A065440(n) (signed row).

Programs

  • Magma
    A158497:= func< n,k | k le 1 select n^k else n*(n-1)^(k-1) >;
    [A158497(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2025
    
  • Mathematica
    A158497[n_, k_]:= If[n<2 || k==0, 1, n*(n-1)^(k-1)];
    Table[A158497[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2025 *)
  • SageMath
    def A158497(n,k): return n^k if k<2 else n*(n-1)^(k-1)
    print(flatten([[A158497(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 18 2025

Formula

T(n, k) = (n-1)^(k-1) + (n-1)^k = n*A079901(n-1,k-1), k > 0.
Sum_{k=0..n} T(n,k) = (n*(n-1)^n - 2)/(n-2), n > 2.

Extensions

Edited by R. J. Mathar, Mar 31 2009
More terms added by G. C. Greubel, Mar 18 2025

A168119 n*(n^10+1)/2.

Original entry on oeis.org

0, 1, 1025, 88575, 2097154, 24414065, 181398531, 988663375, 4294967300, 15690529809, 50000000005, 142655835311, 371504185350, 896080197025, 2024782584839, 4324877929695, 8796093022216, 17135948153825
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Cf. A170793.

Programs

  • Magma
    [n*(n^10+1)/2: n in [0..20]]; // Vincenzo Librandi, Sep 15 2011
  • Mathematica
    Table[n (n^10 + 1)/2, {n, 0, 20}] (* Harvey P. Dale, Sep 14 2011 *)
    CoefficientList[Series[x (1 + 1013 x + 76341 x^2 + 1101684 x^3 + 4869162 x^4 + 7861998 x^5 + 4869162 x^6 + 1101684 x^7 + 76341 x^8 + 1013 x^9 + x^10)/(1 - x)^12, {x, 0, 20}], x] (* Vincenzo Librandi, Dec 10 2014 *)

Formula

G.f.: x*(1 + 1013*x + 76341*x^2 + 1101684*x^3 + 4869162*x^4 + 7861998*x^5 + 4869162*x^6 + 1101684*x^7 + 76341*x^8 + 1013*x^9 + x^10)/(1 - x)^12. - Vincenzo Librandi, Dec 10 2014
Showing 1-9 of 9 results.