cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A008966 a(n) = 1 if n is squarefree, otherwise 0.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
The infinite lower triangular matrix with A008966 on the main diagonal and the rest zeros is the square of triangle A143255. - Gary W. Adamson, Aug 02 2008

Crossrefs

Cf. A005117, A008836 (Dirichlet inverse), A013928 (partial sums).
Parity of A002033.
Cf. A082020 (Dgf at s=2), A157289 (Dgf at s=3), A157290 (Dgf at s=4).

Programs

  • Haskell
    a008966 = abs . a008683
    -- Reinhard Zumkeller, Dec 13 2015, Dec 15 2014, May 27 2012, Jan 25 2012
    
  • Magma
    [ Abs(MoebiusMu(n)) : n in [1..100]];
    
  • Maple
    A008966 := proc(n) if numtheory[issqrfree](n) then 1 ; else 0 ; end if; end proc: # R. J. Mathar, Mar 14 2011
  • Mathematica
    A008966[n_] := Abs[MoebiusMu[n]]; Table[A008966[n], {n, 100}] (* Enrique Pérez Herrero, Apr 15 2010 *)
    Table[If[SquareFreeQ[n],1,0],{n,100}] (* or *) Boole[SquareFreeQ/@ Range[ 100]] (* Harvey P. Dale, Feb 28 2015 *)
  • MuPAD
    func(abs(numlib::moebius(n)), n):
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1+X))[n]
    
  • PARI
    a(n)=issquarefree(n) \\ Michel Marcus, Feb 22 2015
    
  • Python
    from sympy import factorint
    def A008966(n): return int(max(factorint(n).values(),default=1)==1) # Chai Wah Wu, Apr 05 2023

Formula

Dirichlet g.f.: zeta(s)/zeta(2s).
a(n) = abs(mu(n)), where mu is the Moebius function (A008683).
a(n) = 0^(bigomega(n) - omega(n)), where bigomega(n) and omega(n) are the numbers of prime factors of n with and without repetition (A001222, A001221, A046660). - Reinhard Zumkeller, Apr 05 2003
Multiplicative with p^e -> 0^(e - 1), p prime and e > 0. - Reinhard Zumkeller, Jul 15 2003
a(n) = 0^(A046951(n) - 1). - Reinhard Zumkeller, May 20 2007
a(n) = 1 - A107078(n). - Reinhard Zumkeller, Oct 03 2008
a(n) = floor(rad(n)/n), where rad() is A007947. - Enrique Pérez Herrero, Nov 13 2009
A175046(n) = a(n)*A073311(n). - Reinhard Zumkeller, Apr 05 2010
a(n) = floor(A000005(n^2)/A007425(n)). - Enrique Pérez Herrero, Apr 15 2010
a(A005117(n)) = 1; a(A013929(n)) = 0; a(n) = A013928(n + 1) - A013928(n). - Reinhard Zumkeller, Jul 05 2010
a(n) * A112526(n) = A063524(n). - Reinhard Zumkeller, Sep 16 2011
a(n) = mu(n) * lambda(n) = A008836(n) * A008683(n). - Enrique Pérez Herrero, Nov 29 2013
a(n) = Sum_{d|n} 2^omega(d)*mu(n/d). - Geoffrey Critzer, Feb 22 2015
a(n) = A085357(A156552(n)). - Antti Karttunen, Mar 06 2017
Limit_{n->oo} (1/n)*Sum_{j=1..n} a(j) = 6/Pi^2. - Andres Cicuttin, Aug 13 2017
a(1) = 1; a(n) = -Sum_{d|n, d < n} (-1)^bigomega(n/d) * a(d). - Ilya Gutkovskiy, Mar 10 2021

Extensions

Deleted an unclear comment. - N. J. A. Sloane, May 30 2021

A126804 a(n) = (2n)! / (n-1)!.

Original entry on oeis.org

2, 24, 360, 6720, 151200, 3991680, 121080960, 4151347200, 158789030400, 6704425728000, 309744468633600, 15543540607795200, 841941782922240000, 48962152914554880000, 3042648073975910400000, 201220459292273541120000, 14110584707870682071040000
Offset: 1

Views

Author

Jonathan R. Love (japanada11(AT)yahoo.ca), Feb 22 2007

Keywords

Comments

Old name was "Multiplying n X n integers above n".
a(n) = 2*A001814(n). - Zerinvary Lajos, May 03 2007
A179214(n) <= a(n). - Reinhard Zumkeller, Jul 05 2010
Product of the numbers from n to 2n. - Wesley Ivan Hurt, Dec 14 2015

Examples

			a(5) = 151200 because five digits above 5: (6, 7, 8, 9, 10), multiplied by five equals 5*(6*7*8*9*10) = 151200.
		

Crossrefs

Cf. A045943, A073838. - Reinhard Zumkeller, Jul 05 2010

Programs

  • Magma
    [Factorial(2*n)/Factorial(n-1) : n in [1..20]]; // Wesley Ivan Hurt, Dec 14 2015
    
  • Maple
    a:=n->sum((count(Permutation(2*n+2),size=n+1)),j=0..n): seq(a(n), n=0..15); # Zerinvary Lajos, May 03 2007
    seq(mul((n+k), k=0..n), n=1..16); # Zerinvary Lajos, Sep 21 2007
    with(combstruct):with(combinat) :bin := {B=Union(Z,Prod(B,B))}: seq (count([B,bin,labeled],size=n)*(n-1), n=2..17); # Zerinvary Lajos, Dec 05 2007
  • Mathematica
    Table[Pochhammer[n, n + 1], {n, 17}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
    Table[(2 n)!/(n - 1)!, {n, 20}] (* Wesley Ivan Hurt, Dec 14 2015 *)
  • PARI
    a(n) = prod(k=n, 2*n, k); \\ Michel Marcus, Dec 15 2015
    
  • PARI
    x='x+O('x^99); Vec(serlaplace(2*x/(1-4*x)^(3/2))) \\ Altug Alkan, Mar 11 2018

Formula

a(n) = (2n)! / (n-1)!.
a(n) = Product_{i=n..2n} i. - Wesley Ivan Hurt, Dec 14 2015
From Robert Israel, Dec 15 2015: (Start)
a(n) = (2*n*(2*n-1)/(n-1))*a(n-1).
E.g.f.: 2*x/(1-4*x)^(3/2). (End)
a(n) = Pochhammer(n,n+1). - Pedro Caceres, Mar 10 2018

Extensions

New name from Wesley Ivan Hurt, Dec 15 2015

A179211 Number of squarefree numbers between n and 2*n (inclusive).

Original entry on oeis.org

2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 8, 9, 9, 11, 11, 13, 13, 15, 15, 15, 15, 15, 16, 16, 17, 19, 19, 20, 19, 21, 21, 22, 22, 24, 23, 24, 24, 25, 25, 26, 26, 27, 28, 29, 29, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 38, 38, 39, 39, 38, 39, 41, 41, 42, 41, 43, 43, 44, 44, 46, 45, 45
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2010

Keywords

Crossrefs

Programs

  • Maple
    a := n -> nops(select(issqrfree, [$n..(2*n)])):
    seq(a(n), n=1..75); # Peter Luschny, Mar 02 2017
  • Mathematica
    a[n_] := Select[Range[n, 2n], SquareFreeQ] // Length;
    Array[a, 75] (* Jean-François Alcover, Jun 22 2018 *)
  • PARI
    f(n)=my(s); forfactored(k=1,sqrtint(n), s += n\k[1]^2*moebius(k)); s
    a(n)=f(2*n)-f(n-1) \\ Charles R Greathouse IV, Nov 05 2017

Formula

a(n) = Sum_{k=n..2*n} A008966(k).
a(n) > A035250(n) for n>2;
A179212(n) = a(n+1) - a(n);
a(n) = A013928(2*n+1) - A013928(n).
a(n) ~ (6/Pi^2) * n. - Amiram Eldar, Mar 03 2021

A179215 Product of squarefree numbers less than n+1.

Original entry on oeis.org

1, 1, 2, 6, 6, 30, 180, 1260, 1260, 1260, 12600, 138600, 138600, 1801800, 25225200, 378378000, 378378000, 6432426000, 6432426000, 122216094000, 122216094000, 2566537974000, 56463835428000, 1298668214844000, 1298668214844000, 1298668214844000, 33765373585944000
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 05 2010

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          a(n-1)*`if`(issqrfree(n), n, 1))
        end:
    seq(a(n), n=0..27);  # Alois P. Heinz, Sep 20 2021
  • Mathematica
    With[{sfnos=Select[Range[50],SquareFreeQ]},Table[Times@@Select[sfnos, #Harvey P. Dale, Jun 13 2011 *)
  • PARI
    a(n) = prod(k=1, n, if (issquarefree(k), k, 1)); \\ Michel Marcus, Sep 20 2021
    
  • PARI
    a(n) = my(p=1); forsquarefree(x=1, n, p*=x[1]); p; \\ Michel Marcus, Sep 20 2021

Formula

a(n) = Product_{k=1..n} k^A008966(k).
A001221(a(n)) = A000720(n).
Subsequence of A025487.
A034386(n) <= a(n) <= A000142(n).
A179214(n) = a(2*n)/a(n-1) for n>0.

Extensions

Definition corrected by Harvey P. Dale, Jun 13 2011

A073838 Product of primes p satisfying n <= p <= 2n.

Original entry on oeis.org

2, 6, 15, 35, 35, 77, 1001, 143, 2431, 46189, 46189, 96577, 96577, 7429, 215441, 6678671, 6678671, 392863, 14535931, 765049, 31367009, 1348781387, 1348781387, 2756205443, 2756205443, 2756205443, 146078888479, 146078888479, 146078888479, 297194980009
Offset: 1

Views

Author

Amarnath Murthy and Benoit Cloitre, Aug 12 2002

Keywords

Comments

a(n) = A034386(2*n)/A034386(n-1); A179214(n) <= a(n). - Reinhard Zumkeller, Jul 05 2010

Examples

			a(7) = 1001 = 7*11*13 (product of primes between 7 and 14).
		

Crossrefs

Cf. A073837.

Programs

  • Maple
    for n from 1 to 50 do l := 1:for j from n to 2*n do if isprime(j) then l := l*j:fi:od:a[n] := l:od:seq(a[j],j=1..50);
  • Mathematica
    Table[Times @@ Select[Range[n, 2 n], PrimeQ], {n, 28}] (* Jayanta Basu, Aug 12 2013 *)
  • PARI
    a(n)=prod(i=n,2*n,i^isprime(i))

Extensions

More terms from Sascha Kurz, Aug 14 2002
Missing a(29) inserted by Andrew Howroyd, Feb 23 2018

A179213 Sum of squarefree numbers between n and 2*n (inclusive).

Original entry on oeis.org

3, 5, 14, 18, 28, 34, 55, 63, 80, 99, 132, 144, 170, 157, 202, 218, 285, 303, 378, 398, 481, 503, 527, 551, 551, 602, 629, 684, 799, 829, 922, 891, 1022, 1056, 1161, 1197, 1344, 1307, 1424, 1464, 1546, 1588, 1717, 1761, 1850, 1941, 2082, 2130, 2227, 2227
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Range[n,2n],SquareFreeQ]],{n,50}] (* Harvey P. Dale, Apr 29 2017 *)

Formula

a(n) = Sum_{k=n..2*n} k*A008966(k).
A073837(n) <= a(n) <= A045943(n);
a(n) = A066779(2*n) - A066779(n-1).
a(n) ~ (9/Pi^2) * n^2 + O(n^(3/2)). - Amiram Eldar, Mar 07 2021
Showing 1-6 of 6 results.