cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A185246 Number of disconnected 4-regular simple graphs on n vertices with girth at least 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 5, 0, 23, 0, 1301, 25, 495379, 13529
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Crossrefs

4-regular simple graphs with girth at least 4: A058348 (connected), this sequence (disconnected), A185346 (not necessarily connected).
Disconnected 4-regular simple graphs with girth at least g: A033483 (g=3), A185244 (g=4), A185245 (g=5), this sequence (g=6).
Disconnected k-regular simple graphs with girth at least 6: A185216 (all k), A185206 (triangle); A185226 (k=2), A185236 (k=3), this sequence (k=4).

Formula

a(n) = A185346(n) - A058348(n) = Euler_transformation(A058348)(n) - A058348(n).

A220087 a(n) = 2^n - 27.

Original entry on oeis.org

-26, -25, -23, -19, -11, 5, 37, 101, 229, 485, 997, 2021, 4069, 8165, 16357, 32741, 65509, 131045, 262117, 524261, 1048549, 2097125, 4194277, 8388581, 16777189, 33554405, 67108837, 134217701, 268435429, 536870885, 1073741797, 2147483621, 4294967269
Offset: 0

Views

Author

Andreas Rieber, Dec 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n - 27, {n, 0, 40}] (* T. D. Noe, Dec 04 2012 *)
    LinearRecurrence[{3,-2},{-26,-25},40] (* Harvey P. Dale, May 17 2018 *)

Formula

From Chai Wah Wu, Jan 17 2020: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
G.f.: (53*x - 26)/((x - 1)*(2*x - 1)). (End)
From Elmo R. Oliveira, Nov 08 2023: (Start)
a(n) = 2*a(n-1) + 27 with a(0) = -26.
E.g.f.: exp(2*x) - 27*exp(x). (End)

A367559 Square array T(n, k) = 2^k - n, read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 2, -1, 1, 4, -2, 0, 3, 8, -3, -1, 2, 7, 16, -4, -2, 1, 6, 15, 32, -5, -3, 0, 5, 14, 31, 64, -6, -4, -1, 4, 13, 30, 63, 128, -7, -5, -2, 3, 12, 29, 62, 127, 256, -8, -6, -3, 2, 11, 28, 61, 126, 255, 512, -9, -7, -4, 1, 10, 27, 60, 125, 254, 511, 1024
Offset: 0

Views

Author

Paul Curtz, Nov 22 2023

Keywords

Examples

			This sequence as square array T(n, k):
  n\k  0    1    2    3    4    5    6    7    8    9    10.
  ---------------------------------------------------------.
  0 :  1    2    4    8   16   32   64  128  256  512  1024.
  1 :  0    1    3    7   15   31   63  127  255  511  1023.
  2 : -1    0    2    6   14   30   62  126  254  510  1022.
  3 : -2   -1    1    5   13   29   61  125  253  509  1021.
  4 : -3   -2    0    4   12   28   60  124  252  508  1020.
  5 : -4   -3   -1    3   11   27   59  123  251  507  1019.
  6 : -5   -4   -2    2   10   26   58  122  250  506  1018.
  7 : -6   -5   -3    1    9   25   57  121  249  505  1017.
  8 : -7   -6   -4    0    8   24   56  120  248  504  1016.
  9 : -8   -7   -5   -1    7   23   55  119  247  503  1015.
  10: -9   -8   -6   -2    6   22   54  118  246  502  1014.
		

Crossrefs

Programs

Formula

G.f. of row n: 1/(1-2*x) - n/(1-x).
E.g.f. of row n: exp(2*x) - n*exp(x).
T(0, k) = 2^k = A000079(k).
T(1, k) = 2^k - 1 = A000225(k).
T(2, k) = 2^k - 2 = A000918(k).
T(3, k) = 2^k - 3 = A036563(k).
T(5, k) = 2^k - 5 = A168616(k).
T(9, k) = 2^k - 9 = A185346(k).
T(10, k) = 2^k - 10 = A246168(k).
T(n, k) = 3*T(n, k-1) - 2*T(n, k-2) for k > 1.
T(n+1, k) = T(n, k) + 1.
T(n, n) = 2^n - n = A000325(n).
Sum_{k = 0..n} T(n - k, k) = A084634(n).
a(n) = 2^A002262(n) - A025581(n).
G.f.: (1 - 2*x - y + 3*x*y)/((1 - x)^2*(1 - y)*(1 - 2*y)). - Stefano Spezia, Nov 27 2023

A246168 a(n) = 2^n - 10.

Original entry on oeis.org

-9, -8, -6, -2, 6, 22, 54, 118, 246, 502, 1014, 2038, 4086, 8182, 16374, 32758, 65526, 131062, 262134, 524278, 1048566, 2097142, 4194294, 8388598, 16777206, 33554422, 67108854, 134217718, 268435446, 536870902, 1073741814, 2147483638
Offset: 0

Views

Author

Vincenzo Librandi, Aug 18 2014

Keywords

Crossrefs

Sequences of the form 2^n-k: A000079 (k=0), A000225 (k=1), A000918 (k=2), A036563 (k=3), A028399 (k=4), A168616 (k=5), A131130 (k=6), A048490 (k=7), A159741 (k=8), A185346 (k=9), this sequence (k=10).

Programs

  • Magma
    [2^n-10: n in [0..40]];
    
  • Mathematica
    Table[2^n - 10, {n, 0, 35}] (* or *) CoefficientList[Series[(-9 + 19 x)/(1 - 3 x + 2 x^2), {x, 0, 35}], x]
    LinearRecurrence[{3,-2},{-9,-8},50] (* Harvey P. Dale, Jan 11 2024 *)
  • PARI
    vector(50, n, 2^(n-1)-10) \\ Derek Orr, Aug 18 2014

Formula

G.f.: (-9+19*x)/(1-3*x+2*x^2).
a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = A000079(n) - 10.
From Elmo R. Oliveira, Dec 21 2023: (Start)
a(n) = 2*a(n-1) + 10 for n>0.
E.g.f.: exp(x)*(exp(x) - 10). (End)

A254027 Table T(n,k) = 3^n - 2^k read by antidiagonals.

Original entry on oeis.org

0, 2, -1, 8, 1, -3, 26, 7, -1, -7, 80, 25, 5, -5, -15, 242, 79, 23, 1, -13, -31, 728, 241, 77, 19, -7, -29, -63, 2186, 727, 239, 73, 11, -23, -61, -127, 6560, 2185, 725, 235, 65, -5, -55, -125, -255, 19682, 6559, 2183, 721, 227, 49, -37, -119, -253, -511, 59048, 19681, 6557, 2179, 713, 211, 17, -101, -247, -509, -1023
Offset: 0

Views

Author

K. G. Stier, Jan 22 2015

Keywords

Comments

Table shows differences of a given power of 3 to the powers of 2 (columns), and differences of the powers of 3 to a given power of 2 (rows), respectively.
Note that positive terms (table's upper right area) and negative terms (lower left area) are separated by an imaginary line with slope -log(3)/log(2) = -1.5849625.. (see A020857). This "border zone" of the table is of interest in terms of how close powers of 3 and powers of 2 can get: i.e., those T(n,k) where k/n is a good rational approximation to log(3)/log(2), see A254351 for numerators k and respective A060528 for denominators n.

Examples

			Table begins
   0    2   8  26  80..
  -1    1   7  25  79..
  -3   -1   5  23  73..
  -7   -5   1  19  65..
  -15 -13  -7  11  49..
  ..   ..  ..  ..  ..
		

Crossrefs

Row 0 (=3^n-1) is A024023.
Row 1 (=3^n-2) is A058481.
Row 2 (=3^n-4) is A168611.
Column 0 (=1-2^n) is (-1)A000225.
Column 1 (=3-2^n) is (-1)A036563.
Column 2 (=9-2^n) is (-1)A185346.
Column 3 (=27-2^n) is (-1)A220087.
0,0-Diagonal (=3^n-2^n) is A001047.
1,0-Diagonal (=3^n-2^(n-1)) for n>0 is A083313 or A064686.
0,1-Diagonal (=3^n-2^(n+1)) is A003063.
0,2-Diagonal (=3^n-2^(n+2)) is A214091.

Programs

  • Mathematica
    Table[3^(n-k) - 2^k, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 18 2017 *)
  • PARI
    for(i=0, 10, {
         for(j=0, i, print1((3^(i-j)-2^j),", "))
    });

A172252 a(n) = 4*2^n - 9.

Original entry on oeis.org

-1, 7, 23, 55, 119, 247, 503, 1015, 2039, 4087, 8183, 16375, 32759, 65527, 131063, 262135, 524279, 1048567, 2097143, 4194295, 8388599, 16777207, 33554423, 67108855, 134217719, 268435447, 536870903, 1073741815, 2147483639, 4294967287, 8589934583, 17179869175, 34359738359
Offset: 1

Views

Author

Artur Jasinski, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4 2^n - 9, {n, 1, 100}]
    LinearRecurrence[{3,-2},{-1,7},30] (* Harvey P. Dale, May 27 2021 *)
  • PARI
    my(x='x+O('x^34)); Vec(x*(10*x-1)/((x-1)*(2*x-1))) \\ Elmo R. Oliveira, Jun 15 2025

Formula

a(n) = 2*a(n-1) + 9, a(1)= -1. - Vincenzo Librandi, Mar 20 2011
For n >= 3, a(n) = 8<+>(n+2), where operation <+> is defined in A206853. - Vladimir Shevelev, Feb 17 2012
From Elmo R. Oliveira, Jun 15 2025: (Start)
G.f.: x*(10*x-1)/((x-1)*(2*x-1)).
E.g.f.: 5 + exp(x)*(4*exp(x) - 9).
a(n) = A185346(n+2) = 4*A000225(n) - 5.
a(n) = A159741(n-1) - 1 for n > 1. (End)

Extensions

More terms from Elmo R. Oliveira, Jun 15 2025

A220088 a(n) = 2^n - 81.

Original entry on oeis.org

-80, -79, -77, -73, -65, -49, -17, 47, 175, 431, 943, 1967, 4015, 8111, 16303, 32687, 65455, 130991, 262063, 524207, 1048495, 2097071, 4194223, 8388527, 16777135, 33554351, 67108783, 134217647, 268435375, 536870831, 1073741743, 2147483567, 4294967215
Offset: 0

Views

Author

Andreas Rieber, Dec 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n - 81, {n, 0, 40}] (* T. D. Noe, Dec 04 2012 *)

Formula

From Chai Wah Wu, Jan 17 2020: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
G.f.: (161*x - 80)/((x - 1)*(2*x - 1)). (End)
From Elmo R. Oliveira, Nov 11 2023: (Start)
a(n) = 2*a(n-1) + 81 with a(0) = -80.
E.g.f.: exp(2*x) - 81*exp(x). (End)

A220089 a(n) = 2^n - 243.

Original entry on oeis.org

-242, -241, -239, -235, -227, -211, -179, -115, 13, 269, 781, 1805, 3853, 7949, 16141, 32525, 65293, 130829, 261901, 524045, 1048333, 2096909, 4194061, 8388365, 16776973, 33554189, 67108621, 134217485, 268435213, 536870669, 1073741581, 2147483405, 4294967053
Offset: 0

Views

Author

Andreas Rieber, Dec 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n - 243, {n, 0, 40}] (* T. D. Noe, Dec 04 2012 *)

Formula

From Chai Wah Wu, Jan 17 2020: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
G.f.: (485*x - 242)/((x - 1)*(2*x - 1)). (End)
From Elmo R. Oliveira, Nov 11 2023: (Start)
a(n) = 2*a(n-1) + 243 with a(0) = -242.
E.g.f.: exp(2*x) - 243*exp(x). (End)

A294364 Linear recurrence with signature (1,1,-1,1,1), where the first terms are powers of 2 (1,2,4,8,16).

Original entry on oeis.org

1, 2, 4, 8, 16, 23, 37, 56, 94, 152, 250, 401, 649, 1046, 1696, 2744, 4444, 7187, 11629, 18812, 30442, 49256, 79702, 128957, 208657, 337610, 546268, 883880, 1430152, 2314031, 3744181, 6058208, 9802390, 15860600, 25662994, 41523593, 67186585, 108710174, 175896760, 284606936
Offset: 0

Views

Author

Keywords

Comments

The interest of this sequence mainly lies in the peculiarities of its array of successive differences, which begins:
1, 2, 4, 8, 16, 23, 37, 56, 94, ...
1, 2, 4, 8, 7, 14, 19, 38, 58, ...
1, 2, 4, -1, 7, 5, 19, 20, 40, ...
1, 2, -5, 8, -2, 14, 1, 20, 13, ...
1, -7, 13, -10, 16, -13, 19, -7, 31, ...
-8, 20, -23, 26, -29, 32, -26, 38, -23, ...
28, -43, 49, -55, 61, -58, 64, -61, 67, ...
The main diagonal is A000079 (powers of 2).
The first upper subdiagonal is A254076.
The second upper subdiagonal (4, 8, 7, 14, 19, 38, ...) is not in the OEIS.
The third upper subdiagonal is A185346 (2^n-9).
Every row, once computed mod 9, is 6-periodic, repeating (1, 2, 4, 8, 7, 5) (A153130).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 1, -1, 1, 1}, {1, 2, 4, 8, 16}, 40]

Formula

G.f.: (1+x+x^2+3*x^3+5*x^4) / (1-x-x^2+x^3-x^4-x^5).
a(n) = (9/2)*fibonacci(n) + (-1)^n - sqrt(3)*sin(n*Pi/3).
a(n) ~ (9/2)*fibonacci(n).
Showing 1-9 of 9 results.