A118395
Expansion of e.g.f. exp(x + x^3).
Original entry on oeis.org
1, 1, 1, 7, 25, 61, 481, 2731, 10417, 91225, 681121, 3493711, 33597961, 303321877, 1938378625, 20282865331, 211375647841, 1607008257841, 18157826367937, 212200671085975, 1860991143630841, 22560913203079021, 289933758771407521, 2869267483843753147, 37116733726117707025
Offset: 0
-
[n le 3 select 1 else Self(n-1) + 3*(n-2)*(n-3)*Self(n-3): n in [1..26]]; // Vincenzo Librandi, Aug 25 2015
-
with(combstruct):seq(count(([S, {S=Set(Union(Z, Prod(Z, Z, Z)))}, labeled], size=n)), n=0..22); # Zerinvary Lajos, Mar 18 2008
-
CoefficientList[Series[E^(x+x^3), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 02 2013 *)
T[n_, k_] := n!/(k!(n-3k)!);
a[n_] := Sum[T[n, k], {k, 0, Floor[n/3]}];
a /@ Range[0, 24] (* Jean-François Alcover, Nov 04 2020 *)
-
a(n)=n!*polcoeff(exp(x+x^3+x*O(x^n)),n)
-
N=33; x='x+O('x^N);
egf=exp(x+x^3);
Vec(serlaplace(egf))
/* Joerg Arndt, Sep 15 2012 */
-
a(n) = n!*sum(k=0, n\3, binomial(n-2*k, k)/(n-2*k)!); \\ Seiichi Manyama, Feb 25 2022
-
def a(n):
if (n<3): return 1
else: return a(n-1) + 3*(n-1)*(n-2)*a(n-3)
[a(n) for n in (0..25)] # G. C. Greubel, Feb 18 2021
A190877
Expansion of e.g.f. exp(x+x^5).
Original entry on oeis.org
1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 1844641, 20013841, 119845441, 519072841, 1816454641, 223394731561, 3501661887361, 29675906201761, 177923109591361, 844925253766561, 104750282797418881
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[x+x^5],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 25 2015 *)
-
a(n):=n!*sum(binomial(n+(-4)*j,j)/(n+(-4)*j)!,j,0,n/4);
-
a(n) = if(n<5, 1, a(n-1)+5!*binomial(n-1, 4)*a(n-5)); \\ Seiichi Manyama, Feb 25 2022
A373522
Expansion of e.g.f. exp(x * (1 + x^3)^(1/3)).
Original entry on oeis.org
1, 1, 1, 1, 9, 41, 121, -279, -1679, 1009, 259281, 1173041, 669241, -267141159, -1295686391, 10821721, 650092657761, 3480768830561, 17723446561, -2911516748764191, -17068971040559639, 427036022281, 21673592659354854681, 137752098937383025481
Offset: 0
A373523
Expansion of e.g.f. exp(x * (1 + x^3)^(2/3)).
Original entry on oeis.org
1, 1, 1, 1, 17, 81, 241, 1, 5601, 62497, 518561, 313281, 3999601, -40669199, 2177551377, 7318933441, 397613245121, -1411251083199, 9245424513601, -1554110065897343, 8222970963680721, 2117868896399761, 11780583339147607601, -55331596875625839999
Offset: 0
A351905
Expansion of e.g.f. exp(x * (1 - x^3)).
Original entry on oeis.org
1, 1, 1, 1, -23, -119, -359, -839, 18481, 178417, 902161, 3318481, -69866279, -1011908039, -7204341143, -36194591159, 726745175521, 14326789219681, 131901636673441, 840736509931297, -16060449291985079, -408041402342457239, -4618341644958693959, -35691963052019431079
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-x^3))))
-
a(n) = n!*sum(k=0, n\4, (-1)^k*binomial(n-3*k, k)/(n-3*k)!);
-
a(n) = if(n<4, 1, a(n-1)-4!*binomial(n-1, 3)*a(n-4));
A351932
Number of set partitions of [n] such that block sizes are either 1 or 4.
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 16, 36, 106, 442, 1786, 6106, 23596, 120836, 631632, 2854216, 13590396, 81258556, 510768316, 2839808572, 16008902296, 108643656136, 787965516416, 5161270717296, 33513036683512, 253407796702776, 2065728484459576, 15485032349429176, 113510664648701776
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
`if`(n<4, 0, a(n-4)*binomial(n-1, 3))+a(n-1))
end:
seq(a(n), n=0..28); # Alois P. Heinz, Feb 26 2022
seq(round(evalf(hypergeom([-n/4,(1-n)/4,(2-n)/4,(3-n)/4],[],32/3))),n=0..28); # Karol A. Penson, Jul 28 2023
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x+x^4/4!)))
-
a(n) = n!*sum(k=0, n\4, 1/4!^k*binomial(n-3*k, k)/(n-3*k)!);
-
a(n) = if(n<4, 1, a(n-1)+binomial(n-1, 3)*a(n-4));
A373707
Expansion of e.g.f. exp(x * (1 + x^3)^2).
Original entry on oeis.org
1, 1, 1, 1, 49, 241, 721, 6721, 124321, 913249, 4243681, 94818241, 1640604241, 14642181841, 131026944049, 3669304504321, 62536989802561, 627395160826561, 10818406189690561, 308036857749752449, 5219006583104930161, 65146235714284117681
Offset: 0
A376565
E.g.f. satisfies A(x) = exp( x*A(x) * (1 + x^3*A(x)^3) ).
Original entry on oeis.org
1, 1, 3, 16, 149, 2016, 34447, 692224, 15986889, 420544000, 12494098331, 414681513984, 15201740343517, 609446038061056, 26511336043734375, 1243650774790045696, 62591481040666342673, 3364694927903114919936, 192423068815578523022899, 11665229364232192000000000
Offset: 0
Showing 1-8 of 8 results.
Comments