A213549
Principal diagonal of the convolution array A213548.
Original entry on oeis.org
1, 12, 53, 155, 360, 721, 1302, 2178, 3435, 5170, 7491, 10517, 14378, 19215, 25180, 32436, 41157, 51528, 63745, 78015, 94556, 113597, 135378, 160150, 188175, 219726, 255087, 294553, 338430, 387035, 440696, 499752, 564553, 635460
Offset: 1
-
(See A213548.)
LinearRecurrence[{5,-10,10,-5,1},{1,12,53,155,360},40] (* Harvey P. Dale, Nov 20 2022 *)
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A051836
a(n) = n*(n+1)*(n+2)*(n+3)*(3*n+2)/120.
Original entry on oeis.org
0, 1, 8, 33, 98, 238, 504, 966, 1716, 2871, 4576, 7007, 10374, 14924, 20944, 28764, 38760, 51357, 67032, 86317, 109802, 138138, 172040, 212290, 259740, 315315, 380016, 454923, 541198, 640088, 752928, 881144, 1026256, 1189881, 1373736, 1579641, 1809522, 2065414
Offset: 0
By the fourth comment: A000217(1..6) and A000326(1..6) give the term a(6) = 1*21+5*15+12*10+22*6+35*3+51*1 = 504. - _Bruno Berselli_, Jun 27 2013
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Andrásfai Graph.
- Eric Weisstein's World of Mathematics, Chordless Cycle.
- Eric Weisstein's World of Mathematics, Graph Complement.
- Index to sequences related to pyramidal numbers.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Cf.
A093560 ((3, 1) Pascal, column m=5).
-
[0] cat [Binomial(n+4, n)*(3*n+5)/5: n in [0..40]]; // Vincenzo Librandi, Jul 04 2017
-
with (combinat):a[0]:=0:for n from 1 to 50 do a[n]:=stirling2(n+2,n)+a[n-1] od: seq(a[n], n=0..34); # Zerinvary Lajos, Mar 17 2008
-
Table[n(n + 1)(n + 2)(n + 3)(3n + 2)/120, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *)
CoefficientList[Series[x (1 + 2 x) / (1 - x)^6, {x, 0, 33}], x] (* Vincenzo Librandi, Jul 04 2017 *)
LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,8,33,98,238},40] (* Harvey P. Dale, Jun 01 2018 *)
-
a(n)=n*(n+1)*(n+2)*(n+3)*(3*n+2)/120 \\ Charles R Greathouse IV, Oct 07 2015
-
[((3*n+2)/(n+4))*binomial(n+4,5) for n in range(41)] # G. C. Greubel, Dec 27 2023
Simpler definition from Ben Creech (mathroxmysox(AT)yahoo.com), Nov 13 2005
A005718
Quadrinomial coefficients: C(2+n,n) + C(3+n,n) + C(4+n,n).
Original entry on oeis.org
3, 12, 31, 65, 120, 203, 322, 486, 705, 990, 1353, 1807, 2366, 3045, 3860, 4828, 5967, 7296, 8835, 10605, 12628, 14927, 17526, 20450, 23725, 27378, 31437, 35931, 40890, 46345, 52328, 58872, 66011, 73780, 82215, 91353, 101232, 111891, 123370, 135710, 148953, 163142, 178321, 194535
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Niall Byrnes, Gary R. W. Greaves, and Matthew R. Foreman, Bootstrapping cascaded random matrix models: correlations in permutations of matrix products, arXiv:2405.02541 [math-ph], 2024. See p. 7.
- R. K. Guy, Letter to N. J. A. Sloane, 1987.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[(((n+14)*n+71)*n+130)*n/24+3: n in [0..45]]; // Vincenzo Librandi, Jun 15 2011
-
A005718:=-(3-3*z+z**2)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[Plus@@Table[Binomial[i + n, n], {i, 2, 4}], {n, 0, 43}] (* From Alonso del Arte, Jun 14 2011 *)
-
a(n)=(((n+14)*n+71)*n+130)*n/24+3 \\ Charles R Greathouse IV, Jun 14 2011
A213550
Rectangular array: (row n) = b**c, where b(h) = h*(h+1)/2, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 5, 2, 15, 9, 3, 35, 25, 13, 4, 70, 55, 35, 17, 5, 126, 105, 75, 45, 21, 6, 210, 182, 140, 95, 55, 25, 7, 330, 294, 238, 175, 115, 65, 29, 8, 495, 450, 378, 294, 210, 135, 75, 33, 9, 715, 660, 570, 462, 350, 245, 155, 85, 37, 10, 1001, 935, 825, 690, 546
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....5....15...35....70....126
2....9....25...55....105...182
3....13...35...75....140...238
4....17...45...95....175...294
5....21...55...115...210...350
-
b[n_] := n (n + 1)/2; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213550 *)
d = Table[t[n, n], {n, 1, 40}] (* A002418 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A005585 *)
Showing 1-5 of 5 results.
Comments