cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A030221 Chebyshev even-indexed U-polynomials evaluated at sqrt(7)/2.

Original entry on oeis.org

1, 6, 29, 139, 666, 3191, 15289, 73254, 350981, 1681651, 8057274, 38604719, 184966321, 886226886, 4246168109, 20344613659, 97476900186, 467039887271, 2237722536169, 10721572793574, 51370141431701, 246129134364931, 1179275530392954, 5650248517599839
Offset: 0

Views

Author

Keywords

Comments

a(n) = L(n,-5)*(-1)^n, where L is defined as in A108299; see also A004253 for L(n,+5). - Reinhard Zumkeller, Jun 01 2005
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4; lim_{n->oo} a(n) = x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives the present sequence. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
The primes in this sequence are 29, 139, 3191, 15289, 350981, 1681651, ... - Ctibor O. Zizka, Sep 02 2008
Inverse binomial transform of A030240. - Philippe Deléham, Nov 19 2009
For positive n, a(n) equals the permanent of the (2n)X(2n) matrix with sqrt(7)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
The aerated sequence (b(n))n>=1 = [1, 0, 6, 0, 29, 0, 139, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -3, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for a connection with Chebyshev polynomials. - Peter Bala, Mar 22 2015
From Wolfdieter Lang, Oct 26 2020: (Start)
((-1)^n)*a(n) = X(n) = ((-1)^n)*(S(n, 5) + S(n-1, 5)) and Y(n) = X(n-1) gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 5*X*Y = +7, for n = -oo..+oo, with Chebyshev S polynomials (see A049310), with S(-1, x) = 0, and S(-n, x) = - S(n-2, x), for n >= 2.
This binary indefinite quadratic form of discriminant 21, representing 7, has only this family of proper solutions (modulo sign flip), and no improper ones.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)

Examples

			G.f. = 1 + 6*x + 29*x^2 + 139*x^3 + 666*x^4 + 3191*x^5 + 15289*x^6 + ...
		

Crossrefs

Cf. A004253, A004254, A100047, A054493 (partial sums), A049310, A003501 (first differences), A299109 (subsequence of primes).

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
    
  • Maple
    A030221 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,6]);
        else
            5*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; l[n_, x_] := Sum[t[n, k]*x^(n-k), {k, 0, n}]; a[n_] := (-1)^n*l[n, -5]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2013, after Reinhard Zumkeller *)
    a[ n_] := ChebyshevU[2 n, Sqrt[7]/2]; (* Michael Somos, Jan 22 2017 *)
  • PARI
    {a(n) = simplify(polchebyshev(2*n, 2, quadgen(28)/2))}; /* Michael Somos, Jan 22 2017 */
  • Sage
    [(lucas_number2(n,5,1)-lucas_number2(n-1,5,1))/3 for n in range(1,22)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = 5*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
a(n) = U(2*n, sqrt(7)/2).
G.f.: (1+x)/(x^2-5*x+1).
a(n) = A004254(n) + A004254(n+1).
a(n) ~ (1/2 + (1/6)*sqrt(21))*((1/2)*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then a(n) = (-1)^n*q(n, -7). - Benoit Cloitre, Nov 10 2002
A054493(2*n) = a(n)^2 for all n in Z. - Michael Somos, Jan 22 2017
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jan 22 2017
0 = -7 + a(n)*(+a(n) - 5*a(n+1)) + a(n+1)*(+a(n+1)) for all n in Z. - Michael Somos, Jan 22 2017
a(n) = S(n, 5) + S(n-1, 5) = S(2*n, sqrt(7)) (see above in terms of U), for n >= 0 with S(-1, 5) = 0, where the coefficients of the Chebyshev S polynomials are given in A049310. - Wolfdieter Lang, Oct 26 2020
From Peter Bala, May 16 2025: (Start)
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/7 (telescoping series: 7/(a(n) - 1/a(n)) = 1/A004254(n+1) + 1/A004254(n)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(7/3) (telescoping product: Product_{k = 1..n} ((a(k) + 1)/(a(k) - 1))^2 = 7/3 * (1 - 8/A231087(n+1))). (End)

A231485 Number of perfect matchings in the graph C_5 X C_{2n}.

Original entry on oeis.org

722, 9922, 155682, 2540032, 41934482, 694861522, 11527389122, 191304901282, 3175220160032, 52703408458882, 874800747092322, 14520494659638322, 241020661471736882, 4000620276282860032, 66404949893677073282, 1102233473331064193122, 18295603728585969257522
Offset: 2

Views

Author

Sergey Perepechko, Nov 09 2013

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2*(361 - 5508*x + 28193*x^2 - 64021*x^3 + 70770*x^4 - 38841*x^5 + 10278*x^6 - 1173*x^7 + 41*x^8)/((1 - x)*(1 - 9*x + 21*x^2 - 9*x^3 + x^4)*(1 - 19*x + 41*x^2 - 19*x^3 + x^4)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Jul 17 2025 *)
  • PARI
    Vec(2*x^2*(361-5508*x+28193*x^2-64021*x^3+70770*x^4-38841*x^5+10278*x^6-1173*x^7+41*x^8)/((1-x)*(1-9*x+21*x^2-9*x^3+x^4)*(1-19*x+41*x^2-19*x^3+x^4)) + O(x^100)) \\ Colin Barker, Dec 13 2014
    
  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, 5, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/5)^2)))); \\ Seiichi Manyama, Feb 14 2021

Formula

G.f.: 2*x^2*(361-5508*x+28193*x^2-64021*x^3+70770*x^4-38841*x^5+10278*x^6-1173*x^7+41*x^8)/((1-x)*(1-9*x+21*x^2-9*x^3+x^4)*(1-19*x+41*x^2-19*x^3+x^4)).
From Seiichi Manyama, Feb 14 2021: (Start)
a(n) = sqrt( Product_{j=1..n} Product_{k=1..5} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/5)^2) ).
a(n) = 28*a(n-1) - 233*a(n-2) + 796*a(n-3) - 1205*a(n-4) + 796*a(n-5) - 233*a(n-6) + 28*a(n-7) - a(n-8) + 200. (End)

A232804 Number of perfect matchings in the graph C_6 x C_n.

Original entry on oeis.org

224, 3108, 9922, 90176, 401998, 3113860, 16091936, 114557000, 643041038, 4357599552, 25689719122, 169094614280, 1026275640544, 6640849944580, 40998347400722, 262671237617216, 1637828186763038, 10433179552323108, 65428999765032736, 415409841636546440, 2613799160004664798, 16563343174199239744
Offset: 3

Views

Author

Sergey Perepechko, Nov 30 2013

Keywords

Crossrefs

Row n=3 of A341741.

Formula

G.f: 2*x^3*(112+882*x-8955*x^2-22184*x^3+151298*x^4+192108*x^5-1004174*x^6-773678*x^7+3077791*x^8+1598624*x^9-4646368*x^10-1738444*x^11+3589216*x^12+ 1010882*x^13-1408253*x^14-318388*x^15+271982*x^16+52648*x^17-23250*x^18-4062*x^19+601*x^20+100*x^21)/((1-x)*(1+x)*(1+5*x+x^2)*(1-5*x+x^2)*(1-2*x-x^2)* (1+2*x-x^2)*(1+x-x^2)*(1-x-x^2)*(1-5*x^2+x^4)*(1-6*x-3*x^2+6*x^3+x^4)).

A341533 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin((2*b-1)*Pi/k)^2) ).

Original entry on oeis.org

2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 256, 224, 1156, 2, 200, 722, 2916, 1058, 6728, 2, 478, 2916, 9922, 38416, 5054, 39204, 2, 1156, 10082, 80000, 155682, 527076, 24200, 228488, 2, 2786, 38416, 401998, 2775556, 2540032, 7311616, 115934, 1331716, 2
Offset: 1

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Examples

			Square array begins:
  2,     8,    14,      36,       82,        200, ...
  2,    36,    50,     256,      722,       2916, ...
  2,   200,   224,    2916,     9922,      80000, ...
  2,  1156,  1058,   38416,   155682,    2775556, ...
  2,  6728,  5054,  527076,  2540032,  105125000, ...
  2, 39204, 24200, 7311616, 41934482, 4115479104, ...
		

Crossrefs

Main diagonal gives A341535.
Cf. A340475.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin((2*b-1)*Pi/k)^2))));

A230033 Number of perfect matchings in the graph C_7 X C_{2n}.

Original entry on oeis.org

10082, 401998, 19681538, 1034315998, 55820091938, 3044533460992, 166779871224962, 9152970837103102, 502711247500143362, 27619744381029252622, 1517688682641434229698, 83401213534557960429502, 4583249488240161816039552, 251871805990373105011941118, 13841645914590329223808310018, 760670944425011837491619633038
Offset: 2

Views

Author

Sergey Perepechko, Dec 20 2013

Keywords

Crossrefs

Programs

  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, 7, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/7)^2)))); \\ Seiichi Manyama, Feb 14 2021

Formula

G.f.: 2*x^2*(5041 -499700*x +20440353*x^2 -466963360*x^3 +6751799885*x^4 -66182756655*x^5 +459438362278*x^6 -2327864968019*x^7 +8797357131438*x^8 -25192378831195*x^9 +55291405473782*x^10 -93750343061691*x^11 +123440474579985*x^12 -126568817064424*x^13 +101127542456783*x^14 -62874205910076*x^15 +30308779015615*x^16 -11259345843608*x^17 +3194422598067*x^18 -683503915153*x^19 +108424368962*x^20 -12458825709*x^21 +1004282914*x^22 -54198917*x^23 +1818498*x^24 -33157*x^25 +239*x^26)/((1 -x)*(1 -13*x +57*x^2 -97*x^3 +57*x^4 -13*x^5 +x^6)*(1 -71*x +952*x^2 -3976*x^3 +6384*x^4 -3976*x^5 +952*x^6 -71*x^7 +x^8)*(1 -54*x +1039*x^2 -9096*x^3 +39037*x^4 -90378*x^5 +118951*x^6 -90378*x^7 +39037*x^8 -9096*x^9 +1039*x^10 -54*x^11 +x^12)).
a(n) = sqrt( Product_{j=1..n} Product_{k=1..7} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/7)^2) ). - Seiichi Manyama, Feb 14 2021

A253678 Number of perfect matchings in the graph C_8 X C_n.

Original entry on oeis.org

1058, 39952, 155682, 3113860, 19681538, 311853312, 2415542018, 33898728836, 294554220578, 3827188349968, 35866638601250, 442299574618756, 4365923647238658, 51942700201804032, 531410627302657538, 6169093269471927940, 64681086501382749218, 738453913359765339152, 7872683691901209561122, 88873260229652630182276
Offset: 3

Views

Author

Sergey Perepechko, Jan 09 2015

Keywords

References

  • S. N. Perepechko, Combinatorial properties of dimer problem on tori (in Russian). Mathematical physics and its applications, The fourth int. conf. Samara, 2014, 280-281.

Crossrefs

Formula

a(n) = 14*a(n-1) + 145*a(n-2) - 2492*a(n-3) - 5832*a(n-4) + 164332*a(n-5) + 6360*a(n-6) - 5592188*a(n-7) + 5575094*a(n-8) + 111829704*a(n-9) - 176471286*a(n-10) - 1404071060*a(n-11) + 2757391176*a(n-12) + 11493707876*a(n-13) - 26094214040*a(n-14) - 62666476628*a(n-15) + 161092194209*a(n-16) + 229194775110*a(n-17) - 673504262865*a(n-18) - 556186915928*a(n-19) + 1946775340976*a(n-20) + 855365272888*a(n-21) - 3933950269712*a(n-22) - 705783359960*a(n-23) + 5586898052980*a(n-24) - 5586898052980*a(n-26) + 705783359960*a(n-27) + 3933950269712*a(n-28) - 855365272888*a(n-29) - 1946775340976*a(n-30) + 556186915928*a(n-31) + 673504262865*a(n-32) - 229194775110*a(n-33) - 161092194209*a(n-34) + 62666476628*a(n-35) + 26094214040*a(n-36) - 11493707876*a(n-37) - 2757391176*a(n-38) + 1404071060*a(n-39) + 176471286*a(n-40) - 111829704*a(n-41) - 5575094*a(n-42) + 5592188*a(n-43) - 6360*a(n-44) - 164332*a(n-45) + 5832*a(n-46) + 2492*a(n-47) - 145*a(n-48) - 14*a(n-49) + a(n-50).
G.f.: 2*x^3*(529 + 12570*x - 278528*x^2 - 1111096*x^3 + 29622124*x^4 + 15949216*x^5 - 1354335880*x^6 + 1073870160*x^7 + 33231636934*x^8 - 49093408612*x^9 - 484852497568*x^10 + 922702092728*x^11 + 4448623050276*x^12 - 9889298009728*x^13 - 26519860399096*x^14 + 66909591407824*x^15 + 104242913448099*x^16 - 300153880511538*x^17 - 268804327853184*x^18 + 917127529551440*x^19 + 437177534552376*x^20 - 1937370697752896*x^21 - 386856893695952*x^22 + 2851262465341600*x^23 + 31463729114724*x^24 - 2933939639544920*x^25 + 353114911609152*x^26 + 2113468417316080*x^27 - 452714140134072*x^28 - 1064902306141568*x^29 + 302352881352848*x^30 + 373692292484128*x^31 - 126783009087417*x^32 - 90391126093930*x^33 + 35100066280832*x^34 + 14772327002472*x^35 - 6497628908516*x^36 - 1572040067936*x^37 + 799287715544*x^38 + 101192826896*x^39 - 63992712074*x^40 - 3215530756*x^41 + 3212411488*x^42 - 3162664*x^43 - 94666796*x^44 + 3355392*x^45 + 1438440*x^46 - 83696*x^47 - 8091*x^48 + 578*x^49)/((1-x)*(1+x)*(1+4*x+x^2)*(1-4*x+x^2)*(1-2*x-x^2)*(1+2*x-x^2)*(1+8*x+16*x^2+8*x^3+x^4)* (1-14*x+34*x^2-14*x^3+x^4)*(1-8*x+16*x^2-8*x^3+x^4)*(1-4*x^2+x^4)*(1+4*x-4*x^2-4*x^3+x^4)*(1+8*x-10*x^2-8*x^3+x^4)*(1-4*x-4*x^2+4*x^3+x^4)*(1-8*x-10*x^2+8*x^3+x^4)*(1-14*x^2+34*x^4-14*x^6+x^8)).

A341741 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards: number of perfect matchings in the graph C_{2n} x C_k.

Original entry on oeis.org

2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 272, 224, 1156, 2, 200, 722, 3108, 1058, 6728, 2, 478, 3108, 9922, 39952, 5054, 39204, 2, 1156, 10082, 90176, 155682, 537636, 24200, 228488, 2, 2786, 39952, 401998, 3113860, 2540032, 7379216, 115934, 1331716, 2
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Comments

Dimer tilings of 2n x k toroidal grid.

Examples

			Square array begins:
  2,     8,    14,      36,       82,        200, ...
  2,    36,    50,     272,      722,       3108, ...
  2,   200,   224,    3108,     9922,      90176, ...
  2,  1156,  1058,   39952,   155682,    3113860, ...
  2,  6728,  5054,  537636,  2540032,  114557000, ...
  2, 39204, 24200, 7379216, 41934482, 4357599552, ...
		

Crossrefs

Columns 1..12 give A007395, A162484(2*n), A231087, A220864(2*n), A231485, A232804(2*n), A230033, A253678(2*n), A281583, A281679(2*n), A308761, A309018(2*n).
T(n,2*n) gives A335586.

Formula

T(n,k) = A341533(n,k)/2 + A341738(n,k) + 2 * ((k+1) mod 2) * A341739(n,ceiling(k/2)).
T(n, 2k) = T(k, 2n).
If k is odd, T(n,k) = A341533(n,k) = 2*A341738(n,k).

Extensions

New name from Andrey Zabolotskiy, Dec 26 2021

A281583 Number of perfect matchings in the graph C_9 X C_{2n}.

Original entry on oeis.org

140450, 16091936, 2415542018, 400448833106, 69206906601800, 12190695635108354, 2167175327735637122, 387018647188487143424, 69272289588070930561250, 12413316310203106546620386, 2225719417041514241075539592, 399192630631160441128470998546
Offset: 2

Views

Author

Sergey Perepechko, Jan 25 2017

Keywords

Comments

For odd values of m the order of recurrence relation for the number of perfect matchings in C_{m} X C_{2n} graph does not exceed 3^floor(m/2).

Crossrefs

Programs

  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, 9, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/9)^2)))); \\ Seiichi Manyama, Feb 14 2021

Formula

a(n) = sqrt( Product_{j=1..n} Product_{k=1..9} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/9)^2) ). - Seiichi Manyama, Feb 14 2021

A281679 Number of perfect matchings in the graph C_10 X C_n.

Original entry on oeis.org

5054, 537636, 2540032, 114557000, 1034315998, 33898728836, 400448833106, 11203604497408, 152849502772958, 3876306765700644, 58099728840105682, 1375359477482867528, 22057225099289357824, 496348449090698237956, 8370856315868909044082, 181385918483215101487880
Offset: 3

Views

Author

Sergey Perepechko, Jan 26 2017

Keywords

Comments

For even values of m the order of recurrence relation for the number of perfect matchings in C_m X C_n graph does not exceed (3^delta(m/2) + 2*(3/5)^(1 - delta(m/2)))*5^floor(m/4) + 1. Here delta(k) equals 1 for odd values of k and 0 otherwise. If m=10 the above estimate gives 126 for the order of recurrence relation while the exact value equals 118.

Crossrefs

A341493 a(n) = ( Product_{j=1..n} Product_{k=1..n+1} (4*sin((2*j-1)*Pi/n)^2 + 4*sin((2*k-1)*Pi/(n+1))^2) )^(1/4).

Original entry on oeis.org

1, 2, 14, 50, 722, 9922, 401998, 19681538, 2415542018, 400448833106, 152849502772958, 83804387156528018, 100644292294423977842, 180483873668860889130642, 686161117968330536875295134, 4001215836806010384390623471618
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Comments

Number of perfect matchings in the graph C_n X C_{n+1} for n > 0.

Crossrefs

Programs

  • Mathematica
    Table[Product[4*Sin[(2*j - 1)*Pi/n]^2 + 4*Sin[(2*k - 1)*Pi/(n+1)]^2, {k, 1, n+1}, {j, 1, n}]^(1/4), {n, 0, 15}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(prod(j=1, n, prod(k=1, n+1, 4*sin((2*j-1)*Pi/n)^2+4*sin((2*k-1)*Pi/(n+1))^2))^(1/4));

Formula

a(n) ~ 2^(3/4) * exp(G*n*(n+1)/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021
Showing 1-10 of 10 results.