A030221
Chebyshev even-indexed U-polynomials evaluated at sqrt(7)/2.
Original entry on oeis.org
1, 6, 29, 139, 666, 3191, 15289, 73254, 350981, 1681651, 8057274, 38604719, 184966321, 886226886, 4246168109, 20344613659, 97476900186, 467039887271, 2237722536169, 10721572793574, 51370141431701, 246129134364931, 1179275530392954, 5650248517599839
Offset: 0
G.f. = 1 + 6*x + 29*x^2 + 139*x^3 + 666*x^4 + 3191*x^5 + 15289*x^6 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- K. Dilcher and K. B. Stolarsky, A Pascal-type triangle characterizing twin primes, Amer. Math. Monthly, 112 (2005), 673-681. (see page 678)
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See p. 18.
- Christian Kassel and Christophe Reutenauer, Pairs of intertwined integer sequences, arXiv:2507.15780 [math.NT], 2025. See p. 13.
- Tanya Khovanova, Recursive Sequences.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), rhs, m=6.
- Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
- Donatella Merlini and Renzo Sprugnoli, Arithmetic into geometric progressions through Riordan arrays, Discrete Mathematics 340.2 (2017): 160-174.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (5,-1).
-
I:=[1,6]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
-
A030221 := proc(n)
option remember;
if n <= 1 then
op(n+1,[1,6]);
else
5*procname(n-1)-procname(n-2) ;
end if;
end proc: # R. J. Mathar, Apr 30 2017
-
t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; l[n_, x_] := Sum[t[n, k]*x^(n-k), {k, 0, n}]; a[n_] := (-1)^n*l[n, -5]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2013, after Reinhard Zumkeller *)
a[ n_] := ChebyshevU[2 n, Sqrt[7]/2]; (* Michael Somos, Jan 22 2017 *)
-
{a(n) = simplify(polchebyshev(2*n, 2, quadgen(28)/2))}; /* Michael Somos, Jan 22 2017 */
-
[(lucas_number2(n,5,1)-lucas_number2(n-1,5,1))/3 for n in range(1,22)] # Zerinvary Lajos, Nov 10 2009
A231485
Number of perfect matchings in the graph C_5 X C_{2n}.
Original entry on oeis.org
722, 9922, 155682, 2540032, 41934482, 694861522, 11527389122, 191304901282, 3175220160032, 52703408458882, 874800747092322, 14520494659638322, 241020661471736882, 4000620276282860032, 66404949893677073282, 1102233473331064193122, 18295603728585969257522
Offset: 2
- Colin Barker, Table of n, a(n) for n = 2..819
- P. W. Kasteleyn, The Statistics of Dimers on a Lattice, Physica, 27 (1961), 1209-1225.
- Index entries for linear recurrences with constant coefficients, signature (29,-261,1029,-2001,2001,-1029,261,-29,1).
-
CoefficientList[Series[2*(361 - 5508*x + 28193*x^2 - 64021*x^3 + 70770*x^4 - 38841*x^5 + 10278*x^6 - 1173*x^7 + 41*x^8)/((1 - x)*(1 - 9*x + 21*x^2 - 9*x^3 + x^4)*(1 - 19*x + 41*x^2 - 19*x^3 + x^4)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Jul 17 2025 *)
-
Vec(2*x^2*(361-5508*x+28193*x^2-64021*x^3+70770*x^4-38841*x^5+10278*x^6-1173*x^7+41*x^8)/((1-x)*(1-9*x+21*x^2-9*x^3+x^4)*(1-19*x+41*x^2-19*x^3+x^4)) + O(x^100)) \\ Colin Barker, Dec 13 2014
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 5, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/5)^2)))); \\ Seiichi Manyama, Feb 14 2021
A232804
Number of perfect matchings in the graph C_6 x C_n.
Original entry on oeis.org
224, 3108, 9922, 90176, 401998, 3113860, 16091936, 114557000, 643041038, 4357599552, 25689719122, 169094614280, 1026275640544, 6640849944580, 40998347400722, 262671237617216, 1637828186763038, 10433179552323108, 65428999765032736, 415409841636546440, 2613799160004664798, 16563343174199239744
Offset: 3
A341533
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin((2*b-1)*Pi/k)^2) ).
Original entry on oeis.org
2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 256, 224, 1156, 2, 200, 722, 2916, 1058, 6728, 2, 478, 2916, 9922, 38416, 5054, 39204, 2, 1156, 10082, 80000, 155682, 527076, 24200, 228488, 2, 2786, 38416, 401998, 2775556, 2540032, 7311616, 115934, 1331716, 2
Offset: 1
Square array begins:
2, 8, 14, 36, 82, 200, ...
2, 36, 50, 256, 722, 2916, ...
2, 200, 224, 2916, 9922, 80000, ...
2, 1156, 1058, 38416, 155682, 2775556, ...
2, 6728, 5054, 527076, 2540032, 105125000, ...
2, 39204, 24200, 7311616, 41934482, 4115479104, ...
-
default(realprecision, 120);
T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin((2*b-1)*Pi/k)^2))));
A230033
Number of perfect matchings in the graph C_7 X C_{2n}.
Original entry on oeis.org
10082, 401998, 19681538, 1034315998, 55820091938, 3044533460992, 166779871224962, 9152970837103102, 502711247500143362, 27619744381029252622, 1517688682641434229698, 83401213534557960429502, 4583249488240161816039552, 251871805990373105011941118, 13841645914590329223808310018, 760670944425011837491619633038
Offset: 2
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 7, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/7)^2)))); \\ Seiichi Manyama, Feb 14 2021
A253678
Number of perfect matchings in the graph C_8 X C_n.
Original entry on oeis.org
1058, 39952, 155682, 3113860, 19681538, 311853312, 2415542018, 33898728836, 294554220578, 3827188349968, 35866638601250, 442299574618756, 4365923647238658, 51942700201804032, 531410627302657538, 6169093269471927940, 64681086501382749218, 738453913359765339152, 7872683691901209561122, 88873260229652630182276
Offset: 3
- S. N. Perepechko, Combinatorial properties of dimer problem on tori (in Russian). Mathematical physics and its applications, The fourth int. conf. Samara, 2014, 280-281.
A341741
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards: number of perfect matchings in the graph C_{2n} x C_k.
Original entry on oeis.org
2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 272, 224, 1156, 2, 200, 722, 3108, 1058, 6728, 2, 478, 3108, 9922, 39952, 5054, 39204, 2, 1156, 10082, 90176, 155682, 537636, 24200, 228488, 2, 2786, 39952, 401998, 3113860, 2540032, 7379216, 115934, 1331716, 2
Offset: 1
Square array begins:
2, 8, 14, 36, 82, 200, ...
2, 36, 50, 272, 722, 3108, ...
2, 200, 224, 3108, 9922, 90176, ...
2, 1156, 1058, 39952, 155682, 3113860, ...
2, 6728, 5054, 537636, 2540032, 114557000, ...
2, 39204, 24200, 7379216, 41934482, 4357599552, ...
Columns 1..12 give
A007395,
A162484(2*n),
A231087,
A220864(2*n),
A231485,
A232804(2*n),
A230033,
A253678(2*n),
A281583,
A281679(2*n),
A308761,
A309018(2*n).
A281583
Number of perfect matchings in the graph C_9 X C_{2n}.
Original entry on oeis.org
140450, 16091936, 2415542018, 400448833106, 69206906601800, 12190695635108354, 2167175327735637122, 387018647188487143424, 69272289588070930561250, 12413316310203106546620386, 2225719417041514241075539592, 399192630631160441128470998546
Offset: 2
- Seiichi Manyama, Table of n, a(n) for n = 2..443
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V.16, No.4, pp.333-361.
- Sergey Perepechko, Generating function, in Maple notation.
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 9, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/9)^2)))); \\ Seiichi Manyama, Feb 14 2021
A281679
Number of perfect matchings in the graph C_10 X C_n.
Original entry on oeis.org
5054, 537636, 2540032, 114557000, 1034315998, 33898728836, 400448833106, 11203604497408, 152849502772958, 3876306765700644, 58099728840105682, 1375359477482867528, 22057225099289357824, 496348449090698237956, 8370856315868909044082, 181385918483215101487880
Offset: 3
- Seiichi Manyama, Table of n, a(n) for n = 3..500
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
- Sergey Perepechko, Generating function, in Maple notation.
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Perfect Matching
- Eric Weisstein's World of Mathematics, Torus Grid Graph
A341493
a(n) = ( Product_{j=1..n} Product_{k=1..n+1} (4*sin((2*j-1)*Pi/n)^2 + 4*sin((2*k-1)*Pi/(n+1))^2) )^(1/4).
Original entry on oeis.org
1, 2, 14, 50, 722, 9922, 401998, 19681538, 2415542018, 400448833106, 152849502772958, 83804387156528018, 100644292294423977842, 180483873668860889130642, 686161117968330536875295134, 4001215836806010384390623471618
Offset: 0
Cf.
A162484,
A220864,
A230033,
A231087,
A231485,
A232804,
A253678,
A281583,
A281679,
A308761,
A309018,
A335586.
-
Table[Product[4*Sin[(2*j - 1)*Pi/n]^2 + 4*Sin[(2*k - 1)*Pi/(n+1)]^2, {k, 1, n+1}, {j, 1, n}]^(1/4), {n, 0, 15}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
-
default(realprecision, 120);
a(n) = round(prod(j=1, n, prod(k=1, n+1, 4*sin((2*j-1)*Pi/n)^2+4*sin((2*k-1)*Pi/(n+1))^2))^(1/4));
Showing 1-10 of 10 results.
Comments