A238477
a(n) = 32*n - 27 for n >= 1. Second column of triangle A238475.
Original entry on oeis.org
5, 37, 69, 101, 133, 165, 197, 229, 261, 293, 325, 357, 389, 421, 453, 485, 517, 549, 581, 613, 645, 677, 709, 741, 773, 805, 837, 869, 901, 933, 965, 997, 1029, 1061, 1093, 1125, 1157, 1189, 1221, 1253, 1285, 1317, 1349, 1381, 1413, 1445, 1477, 1509, 1541, 1573
Offset: 1
a(1) = 5 because the Collatz sequence of length 6 is [5, 16, 8, 4, 2, 1], following the pattern udddd, ending in 1, and 5 is the smallest start number following this pattern ending in an odd number.
a(2) = 37 with the length 6 Collatz sequence [37, 112, 56, 28, 14, 7] ending in 12 - 5 = 7, and this is the second smallest start number with this sequence pattern ending in an odd number.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
-
CoefficientList[Series[(5 + 27 x)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 12 2014 *)
A239123
a(n) = 128*n - 107 for n >= 1. Third column of triangle A238475.
Original entry on oeis.org
21, 149, 277, 405, 533, 661, 789, 917, 1045, 1173, 1301, 1429, 1557, 1685, 1813, 1941, 2069, 2197, 2325, 2453, 2581, 2709, 2837, 2965, 3093, 3221, 3349, 3477, 3605, 3733, 3861, 3989, 4117, 4245, 4373, 4501, 4629, 4757, 4885, 5013, 5141, 5269, 5397, 5525, 5653
Offset: 1
a(1) = 21 because the Collatz sequence of length 8 is [21, 64, 32, 16, 8, 4, 2, 1] ending in 6*1-5 = 1, and 21 is the smallest positive number following this pattern udddddd ending in an odd number.
a(2) = 149 with the length 8 Collatz sequence [149, 448, 224, 112, 56, 28, 14, 7] ending in 6*2 - 5 = 7, and 149 is the second smallest start number following this pattern ud^6, ending in an odd number.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
-
CoefficientList[Series[(21 + 107 x)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 12 2014 *)
A017077
a(n) = 8*n + 1.
Original entry on oeis.org
1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249, 257, 265, 273, 281, 289, 297, 305, 313, 321, 329, 337, 345, 353, 361, 369, 377, 385, 393, 401, 409, 417, 425, 433
Offset: 0
Illustration of initial terms:
. o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o
. o o o o o o
. o o o
--------------------------------------------------------------
. 1 9 17 25 33
- _Bruno Berselli_, Feb 28 2014
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Eric Weisstein's World of Mathematics, Antiprism Graph.
- Eric Weisstein's World of Mathematics, Clique.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Apart from the initial term, row sums of triangle
A278480.
-
a017077 = (+ 1) . (* 8)
a017077_list = [1, 9 ..] -- Reinhard Zumkeller, Dec 28 2012
-
I:=[1,9]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..60]]; // Vincenzo Librandi, Mar 14 2014
-
[8*n+1 : n in [0..50]]; // Wesley Ivan Hurt, Jul 08 2014
-
A017077:=n->8*n+1: seq(A017077(n), n=0..50); # Wesley Ivan Hurt, Jul 08 2014
-
Table[8 n + 1, {n, 0, 6!}] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2010 *)
CoefficientList[Series[(1 + 7 x)/(1 - x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Mar 14 2014 *)
8 Range[0, 50] + 1 (* Wesley Ivan Hurt, Jul 08 2014 *)
LinearRecurrence[{2, -1}, {9, 17}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *)
-
a(n)=8*n+1 \\ Charles R Greathouse IV, Jul 10 2016
A347834
An array A of the positive odd numbers, read by antidiagonals upwards, giving the present triangle T.
Original entry on oeis.org
1, 3, 5, 7, 13, 21, 9, 29, 53, 85, 11, 37, 117, 213, 341, 15, 45, 149, 469, 853, 1365, 17, 61, 181, 597, 1877, 3413, 5461, 19, 69, 245, 725, 2389, 7509, 13653, 21845, 23, 77, 277, 981, 2901, 9557, 30037, 54613, 87381, 25, 93, 309, 1109, 3925, 11605, 38229, 120149, 218453, 349525
Offset: 1
The array A(k, n) begins:
k\n 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------------------
1: 1 5 21 85 341 1365 5461 21845 87381 349525 1398101
2: 3 13 53 213 853 3413 13653 54613 218453 873813 3495253
3: 7 29 117 469 1877 7509 30037 120149 480597 1922389 7689557
4: 9 37 149 597 2389 9557 38229 152917 611669 2446677 9786709
5: 11 45 181 725 2901 11605 46421 185685 742741 2970965 11883861
6: 15 61 245 981 3925 15701 62805 251221 1004885 4019541 16078165
7: 17 69 277 1109 4437 17749 70997 283989 1135957 4543829 18175317
8: 19 77 309 1237 4949 19797 79189 316757 1267029 5068117 20272469
9: 23 93 373 1493 5973 23893 95573 382293 1529173 6116693 24466773
10: 25 101 405 1621 6485 25941 103765 415061 1660245 6640981 26563925
...
--------------------------------------------------------------------
The triangle T(k, n) begins:
k\n 0 1 2 3 4 5 6 7 8 9 ...
------------------------------------------------------------
1: 1
2: 3 5
3: 7 13 21
4: 9 29 53 85
5: 11 37 117 213 341
6: 15 45 149 469 853 1365
7: 17 61 181 597 1877 3413 5461
8: 19 69 245 725 2389 7509 13653 21845
9: 23 77 277 981 2901 9557 30037 54613 87381
10: 25 93 309 1109 3925 11605 38229 120149 218453 349525
...
-------------------------------------------------------------
Row index k of array A, for entries 5 (mod 8).
213 = 5 + 8*26. K = 28 is even, (3*231+1)/16 = 40, A065883(40) = 10, hence A(k, 0) = N' = (10-1)/3 = 3, and k = 2. Moreover, n = log_4((3*213 + 1)/(3*A(2,0) + 1)) = log_4(64) = 3. 213 = A(2, 3).
85 = 5 + 8*10. K = 10 is even, (3*85 + 1)/16 = 16, A065883(16) = 1, N' = (1-1)/3 = 0 is even, hence A(k, 0) = 4*0 + 1 = 1, k = 1. 85 = A(1, 3).
61 = 5 + 8*7, K = 7 is odd, k = (7+1)/2 + ceiling((7+1)/4) = 6, and n = log_4((3*61 + 1)/(3*A(6,0) + 1)) = 1. 61 = A(6, 1).
----------------------------------------------------------------------------
Row sequences of the array A, also diagonal sequences of the triangle T: -
A007583 (k=0),
A002450(n+1),
A072197,
A072261(n+1),
A206374(n+1),
A072262(n+1),
A072262(n+1),
A072201(n+1),
A330246(n+1), ...
Cf.
A004770,
A007494,
A016777,
A065883,
A047395,
A047529,
A178415,
A238475,
A256598,
A265667,
A319451,
A347839,
A347840.
-
# Seen as an array:
A := (n, k) -> ((3*(n + floor(n/3)) - 1)*4^(k+1) - 2)/6:
for n from 1 to 6 do seq(A(n, k), k = 0..9) od;
# Seen as a triangle:
T := (n, k) -> 2^(2*k + 1)*(floor((n - k)/3) - k + n - 1/3) - 1/3:
for n from 1 to 9 do seq(T(n, k), k = 0..n-1) od;
# Using row expansion:
gf_row := k -> (1 / (x - 1) - A047395(k)) / (4*x - 1):
for k from 1 to 10 do seq(coeff(series(gf_row(k), x, 11), x, n), n = 0..10) od;
# Peter Luschny, Oct 09 2021
-
A347834[k_, n_] := (4^n*(6*(Floor[k/3] + k) - 2) - 1)/3;
Table[A347834[k - n, n], {k, 10}, {n, 0, k - 1}] (* Paolo Xausa, Jun 26 2025 *)
A239126
Rectangular array showing the starting values M(n, k), k >= 1, for the Collatz operation (ud)^n, n >= 1, ending in an odd number, read by antidiagonals.
Original entry on oeis.org
3, 7, 7, 11, 15, 15, 15, 23, 31, 31, 19, 31, 47, 63, 63, 23, 39, 63, 95, 127, 127, 27, 47, 79, 127, 191, 255, 255, 31, 55, 95, 159, 255, 383, 511, 511, 35, 63, 111, 191, 319, 511, 767, 1023, 1023, 39, 71, 127, 223, 383, 639, 1023, 1535, 2047, 2047
Offset: 1
The rectangular array M(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 3 7 11 15 19 23 27 31 35 39
2: 7 15 23 31 39 47 55 63 71 79
3: 15 31 47 63 79 95 111 127 143 159
4: 31 63 95 127 159 191 223 255 287 319
5: 63 127 191 255 319 383 447 511 575 639
6: 127 255 383 511 639 767 895 1023 1151 1279
7: 255 511 767 1023 1279 1535 1791 2047 2303 2559
8: 511 1023 1535 2047 2559 3071 3583 4095 4607 5119
9: 1023 2047 3071 4095 5119 6143 7167 8191 9215 10239
10: 2047 4095 6143 8191 10239 12287 14335 16383 18431 20479
...
The triangle TM(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 8 9 10 ...
1: 3
2: 7 7
3: 11 15 15
4: 15 23 31 31
5: 19 31 47 63 63
6: 23 39 63 95 127 127
7: 27 47 79 127 191 255 255
8: 31 55 95 159 255 383 511 511
9: 35 63 111 191 319 511 767 1023 1023
10: 39 71 127 223 383 639 1023 1535 2047 2047
...
---------------------------------------------------------------------
n=1, ud, k=1: M(1, 1) = 3 = TM(1, 1), N(1,1) = 5 with the Collatz sequence [3, 10, 5] of length 3.
n=1, ud, k=2: M(1, 2) = 7 = TM(2, 1), N(1,2) = 11 with the Collatz sequence [7, 22, 11] of length 3.
n=4, (ud)^4, k=2: M(4, 2) = 63 = TM(5, 4), N(4,2) = 323 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323] of length 9.
n=5, (ud)^5, k=1: M(5, 1) = 63 = TM(5, 5), N(5,1) = 485 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323, 970, 485] of length 11.
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Wikipedia, Collatz Conjecture.
A238476
Rectangular array with all start numbers Mo(n, k), k >= 1, for the Collatz operation ud^(2*n-1), n >= 1, ending in an odd number, read by antidiagonals.
Original entry on oeis.org
3, 7, 13, 11, 29, 53, 15, 45, 117, 213, 19, 61, 181, 469, 853, 23, 77, 245, 725, 1877, 3413, 27, 93, 309, 981, 2901, 7509, 13653, 31, 109, 373, 1237, 3925, 11605, 30037, 54613, 35, 125, 437, 1493, 4949, 15701, 46421, 120149, 218453
Offset: 1
The rectangular array Mo(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 3 7 11 15 19 23 27 31 35 39
2: 13 29 45 61 77 93 109 125 141 157
3: 53 117 181 245 309 373 437 501 565 629
4: 213 469 725 981 1237 1493 1749 2005 2261 2517
5: 853 1877 2901 3925 4949 5973 6997 8021 9045 10069
6: 3413 7509 11605 15701 19797 23893 27989 32085 36181 40277
7: 13653 30037 46421 62805 79189 95573 111957 128341 144725 161109
8: 54613 120149 185685 251221 316757 382293 447829 513365 578901 644437
9: 218453 480597 742741 1004885 1267029 1529173 1791317 2053461 2315605 2577749
10: 873813 1922389 2970965 4019541 5068117 6116693 7165269 8213845 9262421 10310997
...
---------------------------------------------------------------------------------------------
The triangle To(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 8 9 10 ...
1: 3
2: 7 13
3: 11 29 53
4: 15 45 117 213
5: 19 61 181 469 853
6: 23 77 245 725 1877 3413
7: 27 93 309 981 2901 7509 13653
8: 31 109 373 1237 3925 11605 30037 54613
9: 35 125 437 1493 4949 15701 46421 120149 218453
10: 39 141 501 1749 5973 19797 62805 185685 480597 873813
...
n=1, ud, k=1: Mo(1, 1) = 3 = To(1, 1), No(1) = 5 with the Collatz sequence [3, 10, 5] of length 3.
n=1, ud, k=2: Mo(1, 2) = 7 = Te(2, 1), No(2) = 11 with the Collatz sequence [7, 22, 11] of length 3.
n=5, ud^9, k=2: Mo(5, 2) = 1877 = Te(6,5), No(2) = 11 with the Collatz sequence [1877, 5632, 2816, 1408, 704, 352, 176, 88, 44, 22, 11] of length 11.
- W. Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Wikipedia, Collatz Conjecture.
A240222
Rectangular array giving all start values M(n, k), k >= 1, for Collatz sequences following the pattern (udd)^(n-1) ud, n >= 1, read by antidiagonals.
Original entry on oeis.org
1, 3, 1, 5, 9, 1, 7, 17, 33, 1, 9, 25, 65, 129, 1, 11, 33, 97, 257, 513, 1, 13, 41, 129, 385, 1025, 2049, 1, 15, 49, 161, 513, 1537, 4097, 8193, 1, 17, 57, 193, 641, 2049, 6145, 16385, 32769, 1, 19, 65, 225, 769, 2561, 8193, 24577, 65537, 131073, 1, 21, 73, 257, 897, 3073, 10241, 32769, 98305
Offset: 1
The rectangular array M(n, k) begins:
n\k 0 1 2 3 4 5 ...
1: 1 3 5 7 9 11
2: 1 9 17 25 33 41
3: 1 33 65 97 129 161
4: 1 129 257 385 513 641
5: 1 513 1025 1537 2049 2561
6: 1 2049 4097 6145 8193 10241
7: 1 8193 16385 24577 32769 40961
8: 1 32769 65537 98305 131073 163841
9: 1 131073 262145 393217 524289 655361
10: 1 524289 1048577 1572865 2097153 2621441
...
For more columns see the link.
The triangle TM(m, n) begins (zeros are not shown):
k\n 1 2 3 4 5 6 7 ...
0: 1
1: 3 1
2: 5 9 1
3: 7 17 33 1
4: 9 25 65 129 1
5: 11 33 97 257 513 1
6: 13 41 129 385 1025 2049 1
...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1 = TM(0, 1), N(1, 0) = 2 with the Collatz sequence [1, 4, 2] of
length 3.
n=1, ud, k=2: M(1, 2) = 5 = TM(2, 1), N(1, 2) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1 = TM(1, 2), Ne(2, 0) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
- Wolfdieter Lang, Rectangular array and triangle.
- Wolfdieter Lang, On Collatz' Words, Sequences and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Wikipedia, Collatz Conjecture
A240223
Rectangular companion array to M(n,k), given in A240222, showing the end numbers N(n, k), k >= 1, for the Collatz operation (udd)^(n-1) ud, n >= 1, read by antidiagonals.
Original entry on oeis.org
2, 5, 2, 8, 11, 2, 11, 20, 29, 2, 14, 29, 56, 83, 2, 17, 38, 83, 164, 245, 2, 20, 47, 110, 245, 488, 731, 2, 23, 56, 137, 326, 731, 1460, 2189, 2, 26, 65, 164, 407, 974, 2189, 4376, 6563, 2, 29, 74, 191, 488, 1217, 2918, 6563, 13124, 19685, 2, 32, 83, 218, 569, 1460, 3647, 8750, 19685, 39368, 59051, 2
Offset: 0
The rectangular array N(n, k) begins
n\k 0 1 2 3 4 5 ...
1: 2 5 8 11 14 17
2: 2 11 20 29 38 47
3: 2 29 56 83 110 137
4: 2 83 164 245 326 407
5: 2 245 488 731 974 1217
6: 2 731 1460 2189 2918 3647
7: 2 2189 4376 6563 8750 10937
8: 2 6563 13124 19685 26246 32807
9: 2 19685 39368 59051 78734 98417
10: 2 59051 118100 177149 236198 295247
...
For more columns see the link.
The triangle TN(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 ...
0: 2
1: 5 2
2: 8 11 2
3: 11 20 29 2
4: 14 29 56 83 2
5: 17 38 83 164 245 2
6: 20 47 110 245 488 731 2
...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1, N(1, 0) = TN(0, 1) = 2 with the Collatz sequence [1, 4, 2] of length 3.
n=1, ud, k=2: M(1, 2) = 5, N(1, 2) = TN(2, 1) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1, Ne(2, 0) = TN(1, 2) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
- Wolfdieter Lang, Rectangular array and triangle.
- Wolfdieter Lang, On Collatz Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
A330246
a(n) = 4^(n+1) + (4^n-1)/3.
Original entry on oeis.org
4, 17, 69, 277, 1109, 4437, 17749, 70997, 283989, 1135957, 4543829, 18175317, 72701269, 290805077, 1163220309, 4652881237, 18611524949, 74446099797, 297784399189, 1191137596757, 4764550387029, 19058201548117, 76232806192469, 304931224769877, 1219724899079509
Offset: 0
Together with 1: first bisection of
A136326.
-
[4^(n+1)+(4^n-1)/3: n in [0..30]];
-
Table[(4^(n + 1) + (4^n - 1) / 3), {n, 0, 30}]
Showing 1-9 of 9 results.
Comments