A239124
a(n) = 64*n - 11 for n >= 1. Third column of triangle A238476.
Original entry on oeis.org
53, 117, 181, 245, 309, 373, 437, 501, 565, 629, 693, 757, 821, 885, 949, 1013, 1077, 1141, 1205, 1269, 1333, 1397, 1461, 1525, 1589, 1653, 1717, 1781, 1845, 1909, 1973, 2037, 2101, 2165, 2229, 2293, 2357, 2421, 2485, 2549, 2613, 2677, 2741, 2805, 2869, 2933, 2997
Offset: 1
a(1) = 53 because the Collatz sequence of length 7 following the pattern uddddd, ending in an odd number is [53, 160, 80, 40, 20, 10, 5]. The end number is 6*1 - 1 = 5.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
A004767
a(n) = 4*n + 3.
Original entry on oeis.org
3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223
Offset: 0
G.f. = 3 + 7*x + 11*x^2 + 15*x^3 + 19*x^4 + 23*x^5 + 27*x^6 + 31*x^7 + ...
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 85.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999. See Theorem 8.1 on page 240.
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Stere Ianus, Mihai Visinescu and Gabriel-Eduard Vilcu, Hidden symmetries and Killing tensors on curved spaces, arXiv:0811.3478 [math-ph], 2008. - _Jonathan Vos Post_, Nov 24 2008
- Tanya Khovanova, Recursive Sequences
- Juan F. Pulido, José L. Ramírez, and Andrés R. Vindas-Meléndez, Generating Trees and Fibonacci Polyominoes, arXiv:2411.17812 [math.CO], 2024. See p. 8.
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N))
- William A. Stein, The modular forms database
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Cf.
A004773,
A005408,
A008545 (partial products),
A008586,
A014105,
A016813,
A016825,
A017137,
A017629,
A022544,
A084849,
A181049,
A238476,
A239126.
-
a004767 = (+ 3) . (* 4)
a004767_list = [3, 7 ..] -- Reinhard Zumkeller, Oct 03 2012
-
[4*n+3: n in [0..50]]; // Wesley Ivan Hurt, Jul 09 2014
-
seq( 3+4*n, n=0..100 );
-
4 Range[50] - 1 (* Wesley Ivan Hurt, Jul 09 2014 *)
-
a(n)=4*n+3 \\ Charles R Greathouse IV, Jul 28 2015
-
Vec((3+x)/(1-x)^2 + O(x^200)) \\ Altug Alkan, Jan 15 2016
-
for n in range(0,50): print(4*n+3, end=', ') # Stefano Spezia, Dec 12 2018
-
[4*n+3 for n in range(50)] # G. C. Greubel, Dec 09 2018
-
(0 to 59).map(4 * + 3) // _Alonso del Arte, Dec 12 2018
A238475
Rectangular array with all start numbers Me(n, k), k >= 1, for the Collatz operation ud^(2*n), n >= 1, ending in an odd number, read by antidiagonals.
Original entry on oeis.org
1, 9, 5, 17, 37, 21, 25, 69, 149, 85, 33, 101, 277, 597, 341, 41, 133, 405, 1109, 2389, 1365, 49, 165, 533, 1621, 4437, 9557, 5461, 57, 197, 661, 2133, 6485, 17749, 38229, 21845, 65, 229, 789, 2645, 8533, 25941, 70997, 152917, 87381
Offset: 1
The rectangular array Me(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 1 9 17 25 33 41 49 57 65 73
2: 5 37 69 101 133 165 197 229 261 293
3: 21 149 277 405 533 661 789 917 1045 1173
4: 85 597 1109 1621 2133 2645 3157 3669 4181 4693
5: 341 2389 4437 6485 8533 10581 12629 14677 16725 18773
6: 1365 9557 17749 25941 34133 42325 50517 58709 66901 75093
7: 5461 38229 70997 103765 136533 169301 202069 234837 267605 300373
8: 21845 152917 283989 415061 546133 677205 808277 939349 1070421 1201493
9: 87381 611669 1135957 1660245 2184533 2708821 3233109 3757397 4281685 4805973
10: 349525 2446677 4543829 6640981 8738133 10835285 12932437 15029589 17126741 19223893
...
The triangle Te(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 9 5
3: 17 37 21
4: 25 69 149 85
5: 33 101 277 597 341
6: 41 133 405 1109 2389 1365
7: 49 165 533 1621 4437 9557 5461
8: 57 197 661 2133 6485 17749 38229 21845
9: 65 229 789 2645 8533 25941 70997 152917 87381
10: 73 261 917 3157 10581 34133 103765 283989 611669 349525
...
----------------------------------------------------------------------------------------------
n=1, ud^2, k=1: Me(1, 1) = 1 = Te(1, 1), Ne(1) = 1 with the Collatz sequence [1, 4, 2, 1] of length 4.
n=1, ud^2, k=2: Me(1, 2) = 9 = Te(2, 1), Ne(2) = 7 with the Collatz sequence [9, 28, 14, 7] of length 4.
n=2, ud^4, k=1: Me(2, 1) = 5 = Te(2, 2), Ne(1) = 1 with the length 6 Collatz sequence [5, 16, 8, 4, 2, 1].
n=5, ud^(10), k=2: Me(5, 2) = 2389 = Te(6,5), Ne(2) = 7 with the Collatz sequence [2389, 7168, 3584, 1792, 896, 448, 224, 112, 56, 28, 14, 7] of length 12.
- W. Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Wikipedia, Collatz Conjecture.
A239126
Rectangular array showing the starting values M(n, k), k >= 1, for the Collatz operation (ud)^n, n >= 1, ending in an odd number, read by antidiagonals.
Original entry on oeis.org
3, 7, 7, 11, 15, 15, 15, 23, 31, 31, 19, 31, 47, 63, 63, 23, 39, 63, 95, 127, 127, 27, 47, 79, 127, 191, 255, 255, 31, 55, 95, 159, 255, 383, 511, 511, 35, 63, 111, 191, 319, 511, 767, 1023, 1023, 39, 71, 127, 223, 383, 639, 1023, 1535, 2047, 2047
Offset: 1
The rectangular array M(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 3 7 11 15 19 23 27 31 35 39
2: 7 15 23 31 39 47 55 63 71 79
3: 15 31 47 63 79 95 111 127 143 159
4: 31 63 95 127 159 191 223 255 287 319
5: 63 127 191 255 319 383 447 511 575 639
6: 127 255 383 511 639 767 895 1023 1151 1279
7: 255 511 767 1023 1279 1535 1791 2047 2303 2559
8: 511 1023 1535 2047 2559 3071 3583 4095 4607 5119
9: 1023 2047 3071 4095 5119 6143 7167 8191 9215 10239
10: 2047 4095 6143 8191 10239 12287 14335 16383 18431 20479
...
The triangle TM(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 8 9 10 ...
1: 3
2: 7 7
3: 11 15 15
4: 15 23 31 31
5: 19 31 47 63 63
6: 23 39 63 95 127 127
7: 27 47 79 127 191 255 255
8: 31 55 95 159 255 383 511 511
9: 35 63 111 191 319 511 767 1023 1023
10: 39 71 127 223 383 639 1023 1535 2047 2047
...
---------------------------------------------------------------------
n=1, ud, k=1: M(1, 1) = 3 = TM(1, 1), N(1,1) = 5 with the Collatz sequence [3, 10, 5] of length 3.
n=1, ud, k=2: M(1, 2) = 7 = TM(2, 1), N(1,2) = 11 with the Collatz sequence [7, 22, 11] of length 3.
n=4, (ud)^4, k=2: M(4, 2) = 63 = TM(5, 4), N(4,2) = 323 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323] of length 9.
n=5, (ud)^5, k=1: M(5, 1) = 63 = TM(5, 5), N(5,1) = 485 with the Collatz sequence [63, 190, 95, 286, 143, 430, 215, 646, 323, 970, 485] of length 11.
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Wikipedia, Collatz Conjecture.
A082285
a(n) = 16*n + 13.
Original entry on oeis.org
13, 29, 45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 237, 253, 269, 285, 301, 317, 333, 349, 365, 381, 397, 413, 429, 445, 461, 477, 493, 509, 525, 541, 557, 573, 589, 605, 621, 637, 653, 669, 685, 701, 717, 733, 749, 765, 781, 797, 813, 829, 845
Offset: 0
-
[[ n : n in [1..1000] | n mod 16 eq 13]]; // Vincenzo Librandi, Oct 10 2011
-
Range[13, 1000, 16] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
LinearRecurrence[{2,-1},{13,29},60] (* Harvey P. Dale, Jan 28 2023 *)
-
\\ solutions to 7^x+11^x == 13 mod 17
anpbn(n) = { for(x=1,n, if((7^x+11^x-13)%17==0,print1(x" "))) }
A240222
Rectangular array giving all start values M(n, k), k >= 1, for Collatz sequences following the pattern (udd)^(n-1) ud, n >= 1, read by antidiagonals.
Original entry on oeis.org
1, 3, 1, 5, 9, 1, 7, 17, 33, 1, 9, 25, 65, 129, 1, 11, 33, 97, 257, 513, 1, 13, 41, 129, 385, 1025, 2049, 1, 15, 49, 161, 513, 1537, 4097, 8193, 1, 17, 57, 193, 641, 2049, 6145, 16385, 32769, 1, 19, 65, 225, 769, 2561, 8193, 24577, 65537, 131073, 1, 21, 73, 257, 897, 3073, 10241, 32769, 98305
Offset: 1
The rectangular array M(n, k) begins:
n\k 0 1 2 3 4 5 ...
1: 1 3 5 7 9 11
2: 1 9 17 25 33 41
3: 1 33 65 97 129 161
4: 1 129 257 385 513 641
5: 1 513 1025 1537 2049 2561
6: 1 2049 4097 6145 8193 10241
7: 1 8193 16385 24577 32769 40961
8: 1 32769 65537 98305 131073 163841
9: 1 131073 262145 393217 524289 655361
10: 1 524289 1048577 1572865 2097153 2621441
...
For more columns see the link.
The triangle TM(m, n) begins (zeros are not shown):
k\n 1 2 3 4 5 6 7 ...
0: 1
1: 3 1
2: 5 9 1
3: 7 17 33 1
4: 9 25 65 129 1
5: 11 33 97 257 513 1
6: 13 41 129 385 1025 2049 1
...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1 = TM(0, 1), N(1, 0) = 2 with the Collatz sequence [1, 4, 2] of
length 3.
n=1, ud, k=2: M(1, 2) = 5 = TM(2, 1), N(1, 2) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1 = TM(1, 2), Ne(2, 0) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
- Wolfdieter Lang, Rectangular array and triangle.
- Wolfdieter Lang, On Collatz' Words, Sequences and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Eric Weisstein's World of Mathematics, Collatz Problem.
- Wikipedia, Collatz Conjecture
A240223
Rectangular companion array to M(n,k), given in A240222, showing the end numbers N(n, k), k >= 1, for the Collatz operation (udd)^(n-1) ud, n >= 1, read by antidiagonals.
Original entry on oeis.org
2, 5, 2, 8, 11, 2, 11, 20, 29, 2, 14, 29, 56, 83, 2, 17, 38, 83, 164, 245, 2, 20, 47, 110, 245, 488, 731, 2, 23, 56, 137, 326, 731, 1460, 2189, 2, 26, 65, 164, 407, 974, 2189, 4376, 6563, 2, 29, 74, 191, 488, 1217, 2918, 6563, 13124, 19685, 2, 32, 83, 218, 569, 1460, 3647, 8750, 19685, 39368, 59051, 2
Offset: 0
The rectangular array N(n, k) begins
n\k 0 1 2 3 4 5 ...
1: 2 5 8 11 14 17
2: 2 11 20 29 38 47
3: 2 29 56 83 110 137
4: 2 83 164 245 326 407
5: 2 245 488 731 974 1217
6: 2 731 1460 2189 2918 3647
7: 2 2189 4376 6563 8750 10937
8: 2 6563 13124 19685 26246 32807
9: 2 19685 39368 59051 78734 98417
10: 2 59051 118100 177149 236198 295247
...
For more columns see the link.
The triangle TN(m, n) begins (zeros are not shown):
m\n 1 2 3 4 5 6 7 ...
0: 2
1: 5 2
2: 8 11 2
3: 11 20 29 2
4: 14 29 56 83 2
5: 17 38 83 164 245 2
6: 20 47 110 245 488 731 2
...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1, N(1, 0) = TN(0, 1) = 2 with the Collatz sequence [1, 4, 2] of length 3.
n=1, ud, k=2: M(1, 2) = 5, N(1, 2) = TN(2, 1) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1, Ne(2, 0) = TN(1, 2) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
- Wolfdieter Lang, Rectangular array and triangle.
- Wolfdieter Lang, On Collatz Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
Showing 1-7 of 7 results.
Comments