cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A239124 a(n) = 64*n - 11 for n >= 1. Third column of triangle A238476.

Original entry on oeis.org

53, 117, 181, 245, 309, 373, 437, 501, 565, 629, 693, 757, 821, 885, 949, 1013, 1077, 1141, 1205, 1269, 1333, 1397, 1461, 1525, 1589, 1653, 1717, 1781, 1845, 1909, 1973, 2037, 2101, 2165, 2229, 2293, 2357, 2421, 2485, 2549, 2613, 2677, 2741, 2805, 2869, 2933, 2997
Offset: 1

Views

Author

Wolfdieter Lang, Mar 10 2014

Keywords

Comments

This sequence gives all start numbers a(n) (sorted increasingly) of Collatz sequences of length 7 following the pattern ud^5 with u (for `up'), mapping an odd number m to 3*m+1, and d (for `down'), mapping an even number m to m/2, requiring that the sequence ends in an odd number. The last entry of this Collatz sequence is 6*n - 1.
This appears in Example 2.1. for x = 5 in the M. Trümper paper given as a link below.

Examples

			a(1) = 53 because the Collatz sequence of length 7 following the pattern uddddd, ending in an odd number is [53, 160, 80, 40, 20, 10, 5]. The end number is 6*1 - 1 = 5.
		

Crossrefs

Cf. A004767 (first column), A082285 (second column), A238476.

Programs

Formula

O.g.f.: x*(53+11*x)/(1-x)^2.
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 11 + exp(x)*(64*x - 11).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

A004767 a(n) = 4*n + 3.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(12).
Binary expansion ends 11.
These the numbers for which zeta(2*x+1) needs just 2 terms to be evaluated. - Jorge Coveiro, Dec 16 2004 [This comment needs clarification]
a(n) is the smallest k such that for every r from 0 to 2n - 1 there exist j and i, k >= j > i > 2n - 1, such that j - i == r (mod (2n - 1)), with (k, (2n - 1)) = (j,(2n - 1)) = (i, (2n - 1)) = 1. - Amarnath Murthy, Sep 24 2003
Complement of A004773. - Reinhard Zumkeller, Aug 29 2005
Any (4n+3)-dimensional manifold endowed with a mixed 3-Sasakian structure is an Einstein space with Einstein constant lambda = 4n + 2 [Theorem 3, p. 10 of Ianus et al.]. - Jonathan Vos Post, Nov 24 2008
Solutions to the equation x^(2*x) = 3*x (mod 4*x). - Farideh Firoozbakht, May 02 2010
Subsequence of A022544. - Vincenzo Librandi, Nov 20 2010
First differences of A084849. - Reinhard Zumkeller, Apr 02 2011
Numbers n such that {1, 2, 3, ..., n} is a losing position in the game of Nim. - Franklin T. Adams-Watters, Jul 16 2011
Numbers n such that there are no primes p that satisfy the relationship p XOR n = p + n. - Brad Clardy, Jul 22 2012
The XOR of all numbers from 1 to a(n) is 0. - David W. Wilson, Apr 21 2013
A089911(4*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
First differences of A014105. - Ivan N. Ianakiev, Sep 21 2013
All triangular numbers in the sequence are congruent to {3, 7} mod 8. - Ivan N. Ianakiev, Nov 12 2013
Apart from the initial term, length of minimal path on an n-dimensional cubic lattice (n > 1) of side length 2, until a self-avoiding walk gets stuck. Construct a path connecting all 2n points orthogonally adjacent from the center, ending at the center. Starting at any point adjacent to the center, there are 2 steps to reach each of the remaining 2n - 1 points, resulting in path length 4n - 2 with a final step connecting the center, for a total path length of 4n - 1, comprising 4n points. - Matthew Lehman, Dec 10 2013
a(n-1), n >= 1, appears as first column in the triangles A238476 and A239126 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
For the Collatz Conjecture, we identify two types of odd numbers. This sequence contains all the ascenders: where (3*a(n) + 1) / 2 is odd and greater than a(n). See A016813 for the descenders. - Jaroslav Krizek, Jul 29 2016

Examples

			G.f. = 3 + 7*x + 11*x^2 + 15*x^3 + 19*x^4 + 23*x^5 + 27*x^6 + 31*x^7 + ...
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 85.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999. See Theorem 8.1 on page 240.

Crossrefs

Cf. A017101 and A004771 (bisection: 3 and 7 mod 8).
Cf. A016838 (square).

Programs

Formula

G.f.: (3+x)/(1-x)^2. - Paul Barry, Feb 27 2003
a(n) = 2*a(n-1) - a(n-2) for n > 1, a(0) = 3, a(1) = 7. - Philippe Deléham, Nov 03 2008
a(n) = A017137(n)/2. - Reinhard Zumkeller, Jul 13 2010
a(n) = 8*n - a(n-1) + 2 for n > 0, a(0) = 3. - Vincenzo Librandi, Nov 20 2010
a(n) = A005408(A005408(n)). - Reinhard Zumkeller, Jun 27 2011
a(n) = 3 + A008586(n). - Omar E. Pol, Jul 27 2012
a(n) = A014105(n+1) - A014105(n). - Michel Marcus, Sep 21 2013
a(n) = A016813(n) + 2. - Jean-Bernard François, Sep 27 2013
a(n) = 4*n - 1, with offset 1. - Wesley Ivan Hurt, Mar 12 2014
From Ilya Gutkovskiy, Jul 29 2016: (Start)
E.g.f.: (3 + 4*x)*exp(x).
Sum_{n >= 0} (-1)^n/a(n) = (Pi + 2*log(sqrt(2) - 1))/(4*sqrt(2)) = A181049. (End)

A238475 Rectangular array with all start numbers Me(n, k), k >= 1, for the Collatz operation ud^(2*n), n >= 1, ending in an odd number, read by antidiagonals.

Original entry on oeis.org

1, 9, 5, 17, 37, 21, 25, 69, 149, 85, 33, 101, 277, 597, 341, 41, 133, 405, 1109, 2389, 1365, 49, 165, 533, 1621, 4437, 9557, 5461, 57, 197, 661, 2133, 6485, 17749, 38229, 21845, 65, 229, 789, 2645, 8533, 25941, 70997, 152917, 87381
Offset: 1

Views

Author

Wolfdieter Lang, Mar 10 2014

Keywords

Comments

The two operations on natural numbers m used in the Collatz 3x+1 conjecture (see the links) are here (following the M. Trümper reference) denoted by u for 'up' and d for 'down': u m = 3*m+1, if m is odd, and d m = m/2 if m is even. The present array gives all positive start numbers Me(n, k), k >= 1, for Collatz sequences following the pattern (word) ud^(2*n), for n >= 1, which end in an odd number. The end number does not depend on n and it is given by Ne(k) = 6*k - 5.
This rectangular array is Example 2.1. with x = 2*n, n >= 1, of the M. Trümper reference, pp. 4-5, written as a triangle by taking NE-SW diagonals. The case x = 2*n+1, n >= 0, for the word ud^(2*k+1) appears as array and triangle in A238476.
The first row sequences of the array Me (they become columns in the triangle Te) are A017077, A238477, A239123, ...
Note that there are also Collatz sequences starting with an odd number, following the pattern ud^(2*n) which end in an even number. For example, take n=1 and the sequence [5, 16, 8, 4]. Such sequences are here not considered.

Examples

			The rectangular array Me(n, k) begins:
n\k      1       2       3        4       5        6        7        8        9       10 ...
1:       1       9      17       25      33       41       49       57       65       73
2:       5      37      69      101     133      165      197      229      261      293
3:      21     149     277      405     533      661      789      917     1045     1173
4:      85     597    1109     1621    2133     2645     3157     3669     4181     4693
5:     341    2389    4437     6485    8533    10581    12629    14677    16725    18773
6:    1365    9557   17749    25941   34133    42325    50517    58709    66901    75093
7:    5461   38229   70997   103765  136533   169301   202069   234837   267605   300373
8:   21845  152917  283989   415061  546133   677205   808277   939349  1070421  1201493
9:   87381  611669 1135957  1660245 2184533  2708821  3233109  3757397  4281685  4805973
10: 349525 2446677 4543829  6640981 8738133 10835285 12932437 15029589 17126741 19223893
...
The triangle Te(m, n) begins (zeros are not shown):
m\n   1    2    3     4      5      6       7       8       9      10 ...
1:    1
2:    9    5
3:   17   37   21
4:   25   69  149    85
5:   33  101  277   597    341
6:   41  133  405  1109   2389   1365
7:   49  165  533  1621   4437   9557    5461
8:   57  197  661  2133   6485  17749   38229   21845
9:   65  229  789  2645   8533  25941   70997  152917   87381
10:  73  261  917  3157  10581  34133  103765  283989  611669  349525
...
----------------------------------------------------------------------------------------------
n=1, ud^2, k=1: Me(1, 1) = 1 = Te(1, 1), Ne(1) = 1 with the Collatz sequence [1, 4, 2, 1] of length 4.
n=1, ud^2, k=2: Me(1, 2) = 9 = Te(2, 1), Ne(2) = 7 with the Collatz sequence [9, 28, 14, 7] of length 4.
n=2, ud^4, k=1: Me(2, 1) = 5 = Te(2, 2), Ne(1) = 1 with the length 6 Collatz sequence [5, 16, 8, 4, 2, 1].
n=5, ud^(10), k=2: Me(5, 2) =  2389  = Te(6,5),  Ne(2) = 7 with the Collatz sequence [2389, 7168, 3584, 1792, 896, 448, 224, 112, 56, 28, 14, 7] of length 12.
		

Crossrefs

Formula

The array: Me(n, k) = 2^(2*n+1)*k - (5*2^(2*n)+1)/3 for n >= 1 and k >= 1.
The triangle: Te(m, n) = Me(n, m-n+1) = 2*4^n*(m-n) + (4^n-1)/3 for m >= n >= 1 and 0 for m < n.

A239126 Rectangular array showing the starting values M(n, k), k >= 1, for the Collatz operation (ud)^n, n >= 1, ending in an odd number, read by antidiagonals.

Original entry on oeis.org

3, 7, 7, 11, 15, 15, 15, 23, 31, 31, 19, 31, 47, 63, 63, 23, 39, 63, 95, 127, 127, 27, 47, 79, 127, 191, 255, 255, 31, 55, 95, 159, 255, 383, 511, 511, 35, 63, 111, 191, 319, 511, 767, 1023, 1023, 39, 71, 127, 223, 383, 639, 1023, 1535, 2047, 2047
Offset: 1

Views

Author

Wolfdieter Lang, Mar 13 2014

Keywords

Comments

The companion array and triangle for the odd end numbers N(n, k) is given in A239127.
The two operations on natural numbers m used in the Collatz 3x+1 conjecture are here (following the M. Trümper paper given in the link) denoted by u for 'up' and d for 'down': u m = 3*m+1, if m is odd, and d m = m/2 if m is even. The present array gives all start numbers M(n, k) for the Collatz word (ud)^n = s^n (s = ud is useful because, except for the one letter word u, at least one d follows a letter u), with n >= 1, and k >= 1. Such Collatz sequences have the maximal number of u's (grow fastest).
This rectangular array is M of Example 2.2. with x=y = n, n >= 1, of the M. Trümper reference, pp. 7-8, written as a triangle by taking NE-SW diagonals. The Collatz sequence starting with M(n, k) has length 2*n+1 for each k and it ends in the odd number N(n, k) given in A239127.
The first row sequences of the array M (columns of triangle TM) are A004767, A004771, A125169, A239128, ...

Examples

			The rectangular array M(n, k) begins:
n\k     1    2    3    4     5     6     7     8     9    10 ...
1:      3    7   11   15    19    23    27    31    35    39
2:      7   15   23   31    39    47    55    63    71    79
3:     15   31   47   63    79    95   111   127   143   159
4:     31   63   95  127   159   191   223   255   287   319
5:     63  127  191  255   319   383   447   511   575   639
6:    127  255  383  511   639   767   895  1023  1151  1279
7:    255  511  767 1023  1279  1535  1791  2047  2303  2559
8:    511 1023 1535 2047  2559  3071  3583  4095  4607  5119
9:   1023 2047 3071 4095  5119  6143  7167  8191  9215 10239
10:  2047 4095 6143 8191 10239 12287 14335 16383 18431 20479
...
The triangle TM(m, n) begins (zeros are not shown):
m\n   1    2     3     4     5     6      7      8      9    10 ...
1:    3
2:    7    7
3:   11   15    15
4:   15   23    31    31
5:   19   31    47    63    63
6:   23   39    63    95   127   127
7:   27   47    79   127   191   255    255
8:   31   55    95   159   255   383    511    511
9:   35   63   111   191   319   511    767   1023   1023
10:  39   71   127   223   383   639   1023   1535   2047  2047
...
---------------------------------------------------------------------
n=1, ud, k=1: M(1, 1) = 3 = TM(1, 1), N(1,1) = 5 with the Collatz sequence  [3, 10, 5] of length 3.
n=1, ud, k=2: M(1, 2) = 7 = TM(2, 1), N(1,2) = 11 with the Collatz sequence  [7, 22, 11] of length 3.
n=4, (ud)^4, k=2: M(4, 2) = 63 = TM(5, 4), N(4,2) = 323 with the Collatz sequence  [63, 190, 95, 286, 143, 430, 215, 646, 323] of length 9.
n=5, (ud)^5, k=1: M(5, 1) = 63 =  TM(5, 5), N(5,1) = 485 with the Collatz sequence  [63, 190, 95, 286, 143, 430, 215, 646, 323, 970, 485] of length 11.
		

Crossrefs

Formula

The array: M(n, k) = 2^(n+1)*k - 1 for n >= 1 and k >= 1.
The triangle: TM(m, n) = M(n, m-n+1) = 2^(n+1)*(m-n+1) - 1 for m >= n >= 1 and 0 for m < n.
a(n) = 4*A087808(A130328(n-1)) - 1 (conjectured). - Christian Krause, Jun 15 2021

A082285 a(n) = 16*n + 13.

Original entry on oeis.org

13, 29, 45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 237, 253, 269, 285, 301, 317, 333, 349, 365, 381, 397, 413, 429, 445, 461, 477, 493, 509, 525, 541, 557, 573, 589, 605, 621, 637, 653, 669, 685, 701, 717, 733, 749, 765, 781, 797, 813, 829, 845
Offset: 0

Views

Author

Cino Hilliard, May 10 2003

Keywords

Comments

Solutions to (7^x + 11^x) mod 17 = 13.
a(n-2), n>=2, gives the second column in triangle A238476 related to the Collatz problem. - Wolfdieter Lang, Mar 12 2014

Crossrefs

Programs

  • Magma
    [[ n : n in [1..1000] | n mod 16 eq 13]]; // Vincenzo Librandi, Oct 10 2011
  • Mathematica
    Range[13, 1000, 16] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
    LinearRecurrence[{2,-1},{13,29},60] (* Harvey P. Dale, Jan 28 2023 *)
  • PARI
    \\ solutions to 7^x+11^x == 13 mod 17
    anpbn(n) = { for(x=1,n, if((7^x+11^x-13)%17==0,print1(x" "))) }
    

Formula

a(n) = 16*n + 13.
a(n) = 32*n - a(n-1) + 10; a(0)=13. - Vincenzo Librandi, Oct 10 2011
From Stefano Spezia, Dec 27 2019: (Start)
O.g.f.: (13 + 3*x)/(1 - x)^2.
E.g.f.: exp(x)*(13 + 16*x). (End)
a(n) = A008594(n+1) + A016813(n+1) - 4. - Leo Tavares, Sep 22 2022
From Elmo R. Oliveira, Apr 12 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
a(n) = A004770(2*n+2). (End)

A240222 Rectangular array giving all start values M(n, k), k >= 1, for Collatz sequences following the pattern (udd)^(n-1) ud, n >= 1, read by antidiagonals.

Original entry on oeis.org

1, 3, 1, 5, 9, 1, 7, 17, 33, 1, 9, 25, 65, 129, 1, 11, 33, 97, 257, 513, 1, 13, 41, 129, 385, 1025, 2049, 1, 15, 49, 161, 513, 1537, 4097, 8193, 1, 17, 57, 193, 641, 2049, 6145, 16385, 32769, 1, 19, 65, 225, 769, 2561, 8193, 24577, 65537, 131073, 1, 21, 73, 257, 897, 3073, 10241, 32769, 98305
Offset: 1

Views

Author

Wolfdieter Lang, Apr 02 2014

Keywords

Comments

The companion array and triangle for the end numbers N(n, k) is given in A240223.
The two operations on natural numbers m used in the Collatz 3x+1 conjecture are here (following the M. Trümper paper given in the link) denoted by u for 'up' and d for 'down': u m = 3*m+1, if m is odd, and d m = m/2 if m is even. The present array gives all start numbers M(n, k) for Collatz sequences realizing the Collatz word (udd)^n ud = (sd)^n s (s = ud is useful because, except for the one letter word u, at least one d follows a letter u), with n >= 1, and k >= 1. The length of these Collatz sequences 3*n. For these Collatz sequences M(n, 0) = M(1, 0) = 1 and N(n, 0) = N(1, 0) = 2.

Examples

			The rectangular array M(n, k) begins:
n\k 0       1       2       3       4       5 ...
1:  1       3       5       7       9      11
2:  1       9      17      25      33      41
3:  1      33      65      97     129     161
4:  1     129     257     385     513     641
5:  1     513    1025    1537    2049    2561
6:  1    2049    4097    6145    8193   10241
7:  1    8193   16385   24577   32769   40961
8:  1   32769   65537   98305  131073  163841
9:  1  131073  262145  393217  524289  655361
10: 1  524289 1048577 1572865 2097153 2621441
...
For more columns see the link.
The triangle TM(m, n) begins (zeros are not shown):
k\n  1  2   3   4    5     6      7 ...
0:   1
1:   3  1
2:   5  9   1
3:   7 17  33   1
4:   9 25  65 129    1
5:  11 33  97 257  513     1
6:  13 41 129 385 1025  2049      1
...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1 = TM(0, 1), N(1, 0) = 2 with the Collatz sequence [1, 4, 2] of
length 3.
n=1, ud, k=2: M(1, 2) = 5 = TM(2, 1), N(1,  2) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1 = TM(1, 2), Ne(2, 0) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
		

Crossrefs

Formula

The array: M(n, k) = 1 + 2^(2*n-1)*k for n >= 1 and k >= 0.
The triangle: TM(m, n) = M(n,m-n+1) = 1 + 2^(2*n-1)*(m-n+1) for m+1 >= n >= 1 and 0 for m+1 < n.

A240223 Rectangular companion array to M(n,k), given in A240222, showing the end numbers N(n, k), k >= 1, for the Collatz operation (udd)^(n-1) ud, n >= 1, read by antidiagonals.

Original entry on oeis.org

2, 5, 2, 8, 11, 2, 11, 20, 29, 2, 14, 29, 56, 83, 2, 17, 38, 83, 164, 245, 2, 20, 47, 110, 245, 488, 731, 2, 23, 56, 137, 326, 731, 1460, 2189, 2, 26, 65, 164, 407, 974, 2189, 4376, 6563, 2, 29, 74, 191, 488, 1217, 2918, 6563, 13124, 19685, 2, 32, 83, 218, 569, 1460, 3647, 8750, 19685, 39368, 59051, 2
Offset: 0

Views

Author

Wolfdieter Lang, Apr 04 2014

Keywords

Comments

The companion array and triangle for the start numbers M(n, k) is given in A240222.
For the Collatz operations u (for 'up') and d (for 'down') see the comment on A240222, also for links, especially for the M. Trümper paper.

Examples

			The rectangular array N(n, k) begins
  n\k 0      1       2       3       4       5 ...
  1:  2      5       8      11      14      17
  2:  2     11      20      29      38      47
  3:  2     29      56      83     110     137
  4:  2     83     164     245     326     407
  5:  2    245     488     731     974    1217
  6:  2    731    1460    2189    2918    3647
  7:  2   2189    4376    6563    8750   10937
  8:  2   6563   13124   19685   26246   32807
  9:  2  19685   39368   59051   78734   98417
  10: 2  59051  118100  177149  236198  295247
  ...
For more columns see the link.
The triangle TN(m, n) begins (zeros are not shown):
  m\n  1  2   3   4    5    6    7 ...
  0:   2
  1:   5  2
  2:   8 11   2
  3:  11 20  29   2
  4:  14 29  56  83    2
  5:  17 38  83 164  245    2
  6:  20 47 110 245  488  731    2
  ...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1, N(1, 0) = TN(0, 1) = 2 with the Collatz sequence [1, 4, 2] of length 3.
n=1, ud, k=2: M(1, 2) = 5, N(1, 2) = TN(2, 1) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1, Ne(2, 0) = TN(1, 2) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
		

Crossrefs

Cf. A238475, A238476, A239126, A239127, A240222, A016789 (first row of N), A017185 (second row of N).

Formula

The array: N(n, k) = 2 + 3^n*k for n >= 1 and k >= 0.
The triangle: TN(m, n) = N(n,m-n+1) = 2 + 3^n*(m-n+1) for m+1 >= n >= 1 and 0 for m+1 < n.
Showing 1-7 of 7 results.