cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A268395 Partial sums of A268389.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 4, 4, 4, 5, 7, 7, 8, 8, 8, 11, 11, 15, 16, 16, 18, 18, 18, 19, 20, 20, 20, 22, 22, 23, 26, 26, 26, 27, 31, 31, 32, 32, 32, 34, 36, 36, 36, 37, 37, 40, 41, 41, 42, 42, 42, 47, 47, 48, 50, 50, 50, 52, 53, 53, 56, 56, 56, 57, 57, 59, 60, 60, 64, 64, 64, 65, 66, 66, 66, 69, 69, 70, 72, 72, 74, 74, 74, 75, 75, 81
Offset: 0

Views

Author

Antti Karttunen, Feb 10 2016

Keywords

Crossrefs

Cf. A268678 (with duplicates removed), A268677 (numbers that do not occur here).
Cf. also A054861.

Programs

  • Mathematica
    f[n_] := Which[n == 1, 0, OddQ@ #, 0, EvenQ@ #, 1 + f[#/2]] &@ Fold[BitXor, n, Quotient[n, 2^Range[BitLength@ n - 1]]]; Accumulate@ Array[f, {85}] (* Michael De Vlieger, Feb 12 2016, after Jan Mangaldan at A006068 *)

Formula

a(0) = 0, for n >= 1, a(n) = A268389(n) + a(n-1).
Other identities. For all n >= 0:
a(n) = A268389(A048631(n)).
a(n) = n - A268672(n).

A277818 Index of the column where n is located in array A277820: a(n) = 1 + A268389(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 1, 2, 3, 1, 2, 1, 1, 4, 1, 5, 2, 1, 3, 1, 1, 2, 2, 1, 1, 3, 1, 2, 4, 1, 1, 2, 5, 1, 2, 1, 1, 3, 3, 1, 1, 2, 1, 4, 2, 1, 2, 1, 1, 6, 1, 2, 3, 1, 1, 3, 2, 1, 4, 1, 1, 2, 1, 3, 2, 1, 5, 1, 1, 2, 2, 1, 1, 4, 1, 2, 3, 1, 3, 1, 1, 2, 1, 7, 2, 1, 1, 2, 4, 1, 2, 1, 1, 3, 2, 1, 1, 3, 1, 2, 6, 1, 1, 4, 2, 1, 3, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 5, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2016

Keywords

Comments

Ordinal transform of A268671.

Crossrefs

One more than A268389.
Cf. A277820.
Cf. A268671 for the other index, also A277822.

Programs

Formula

a(n) = 1 + A268389(n).

A268679 a(n) = A268389(A001969(1+n)); A268389 without its zero terms.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 3, 4, 1, 2, 1, 1, 2, 1, 3, 1, 4, 1, 2, 2, 1, 3, 1, 1, 5, 1, 2, 2, 1, 3, 1, 2, 1, 4, 1, 1, 3, 1, 2, 2, 1, 6, 1, 1, 3, 1, 2, 1, 2, 1, 5, 3, 1, 2, 1, 1, 2, 1, 4, 3, 1, 2, 1, 1, 2, 1, 3, 4, 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 2, 1, 3, 1, 1, 6, 1, 2, 2, 1, 3, 1, 1, 4, 1, 2, 1, 3, 1, 2, 2, 1, 5, 1, 1, 3, 1, 2, 2, 1, 4, 1, 3, 1, 2, 1, 1, 2, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 10 2016

Keywords

Crossrefs

Cf. A268678 (partial sums), A268680.

Programs

Formula

a(n) = A268389(A001969(1+n)).

A001317 Sierpiński's triangle (Pascal's triangle mod 2) converted to decimal.

Original entry on oeis.org

1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295, 4294967297, 12884901891, 21474836485, 64424509455, 73014444049, 219043332147, 365072220245, 1095216660735, 1103806595329, 3311419785987
Offset: 0

Views

Author

Keywords

Comments

The members are all palindromic in binary, i.e., a subset of A006995. - Ralf Stephan, Sep 28 2004
J. H. Conway writes (in Math Forum): at least the first 31 numbers give odd-sided constructible polygons. See also A047999. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 19 2005 [This observation was also made in 1982 by N. L. White (see letter). - N. J. A. Sloane, Jun 15 2015]
Decimal number generated by the binary bits of the n-th generation of the Rule 60 elementary cellular automaton. Thus: 1; 0, 1, 1; 0, 0, 1, 0, 1; 0, 0, 0, 1, 1, 1, 1; 0, 0, 0, 0, 1, 0, 0, 0, 1; ... . - Eric W. Weisstein, Apr 08 2006
Limit_{n->oo} log(a(n))/n = log(2). - Bret Mulvey, May 17 2008
Equals row sums of triangle A166548; e.g., 17 = (2 + 4 + 6 + 4 + 1). - Gary W. Adamson, Oct 16 2009
Equals row sums of triangle A166555. - Gary W. Adamson, Oct 17 2009
For n >= 1, all terms are in A001969. - Vladimir Shevelev, Oct 25 2010
Let n,m >= 0 be such that no carries occur when adding them. Then a(n+m) = a(n)*a(m). - Vladimir Shevelev, Nov 28 2010
Let phi_a(n) be the number of a(k) <= a(n) and respectively prime to a(n) (i.e., totient function over {a(n)}). Then, for n >= 1, phi_a(n) = 2^v(n), where v(n) is the number of 0's in the binary representation of n. - Vladimir Shevelev, Nov 29 2010
Trisection of this sequence gives rows of A008287 mod 2 converted to decimal. See also A177897, A177960. - Vladimir Shevelev, Jan 02 2011
Converting the rows of the powers of the k-nomial (k = 2^e where e >= 1) term-wise to binary and reading the concatenation as binary number gives every (k-1)st term of this sequence. Similarly with powers p^k of any prime. It might be interesting to study how this fails for powers of composites. - Joerg Arndt, Jan 07 2011
This sequence appears in Pascal's triangle mod 2 in another way, too. If we write it as
1111111...
10101010...
11001100...
10001000...
we get (taking the period part in each row):
.(1) (base 2) = 1
.(10) = 2/3
.(1100) = 12/15 = 4/5
.(1000) = 8/15
The k-th row, treated as a binary fraction, seems to be equal to 2^k / a(k). - Katarzyna Matylla, Mar 12 2011
From Daniel Forgues, Jun 16-18 2011: (Start)
Since there are 5 known Fermat primes, there are 32 products of distinct Fermat primes (thus there are 31 constructible odd-sided polygons, since a polygon has at least 3 sides). a(0)=1 (empty product) and a(1) to a(31) are those 31 non-products of distinct Fermat primes.
It can be proved by induction that all terms of this sequence are products of distinct Fermat numbers (A000215):
a(0)=1 (empty product) are products of distinct Fermat numbers in { };
a(2^n+k) = a(k) * (2^(2^n)+1) = a(k) * F_n, n >= 0, 0 <= k <= 2^n - 1.
Thus for n >= 1, 0 <= k <= 2^n - 1, and
a(k) = Product_{i=0..n-1} F_i^(alpha_i), alpha_i in {0, 1},
this implies
a(2^n+k) = Product_{i=0..n-1} F_i^(alpha_i) * F_n, alpha_i in {0, 1}.
(Cf. OEIS Wiki links below.) (End)
The bits in the binary expansion of a(n) give the coefficients of the n-th power of polynomial (X+1) in ring GF(2)[X]. E.g., 3 ("11" in binary) stands for (X+1)^1, 5 ("101" in binary) stands for (X+1)^2 = (X^2 + 1), and so on. - Antti Karttunen, Feb 10 2016

Examples

			Given a(5)=51, a(6)=85 since a(5) XOR 2*a(5) = 51 XOR 102 = 85.
From _Daniel Forgues_, Jun 18 2011: (Start)
  a(0) = 1 (empty product);
  a(1) = 3 = 1 * F_0 = a(2^0+0) = a(0) * F_0;
  a(2) = 5 = 1 * F_1 = a(2^1+0) = a(0) * F_1;
  a(3) = 15 = 3 * 5 = F_0 * F_1 = a(2^1+1) = a(1) * F_1;
  a(4) = 17 = 1 * F_2 = a(2^2+0) = a(0) * F_2;
  a(5) = 51 = 3 * 17 = F_0 * F_2 = a(2^2+1) = a(1) * F_2;
  a(6) = 85 = 5 * 17 = F_1 * F_2 = a(2^2+2) = a(2) * F_2;
  a(7) = 255 = 3 * 5 * 17 = F_0 * F_1 * F_2 = a(2^2+3) = a(3) * F_2;
  ... (End)
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 113.
  • Henry Wadsworth Gould, Exponential Binomial Coefficient Series, Tech. Rep. 4, Math. Dept., West Virginia Univ., Morgantown, WV, Sept. 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 136-137.

Crossrefs

Cf. A038183 (odd bisection, 1D Cellular Automata Rule 90).
Iterates of A048724 (starting from 1).
Row 3 of A048723.
Positions of records in A268389.
Positions of ones in A268669 and A268384 (characteristic function).
Not the same as A045544 nor as A053576.
Cf. A045544.

Programs

  • Haskell
    a001317 = foldr (\u v-> 2*v + u) 0 . map toInteger . a047999_row
    -- Reinhard Zumkeller, Nov 24 2012
    (Scheme, with memoization-macro definec, two variants)
    (definec (A001317 n) (if (zero? n) 1 (A048724 (A001317 (- n 1)))))
    (definec (A001317 n) (if (zero? n) 1 (A048720bi 3 (A001317 (- n 1))))) ;; Where A048720bi implements the dyadic function given in A048720.
    ;; Antti Karttunen, Feb 10 2016
    
  • Magma
    [&+[(Binomial(n, i) mod 2)*2^i: i in [0..n]]: n in [0..41]]; // Vincenzo Librandi, Feb 12 2016
    
  • Maple
    A001317 := proc(n) local k; add((binomial(n,k) mod 2)*2^k, k=0..n); end;
  • Mathematica
    a[n_] := Nest[ BitXor[#, BitShiftLeft[#, 1]] &, 1, n]; Array[a, 42, 0] (* Joel Madigan (dochoncho(AT)gmail.com), Dec 03 2007 *)
    NestList[BitXor[#,2#]&,1,50] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    a(n)=sum(i=0,n,(binomial(n,i)%2)*2^i)
    
  • PARI
    a=1; for(n=0, 66, print1(a,", "); a=bitxor(a,a<<1) ); \\ Joerg Arndt, Mar 27 2013
    
  • PARI
    A001317(n,a=1)={for(k=1,n,a=bitxor(a,a<<1));a} \\ M. F. Hasler, Jun 06 2016
    
  • PARI
    a(n) = subst(lift(Mod(1+'x,2)^n), 'x, 2); \\ Gheorghe Coserea, Nov 09 2017
    
  • Python
    from sympy import binomial
    def a(n): return sum([(binomial(n, i)%2)*2**i for i in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
    
  • Python
    def A001317(n): return int(''.join(str(int(not(~n&k))) for k in range(n+1)),2) # Chai Wah Wu, Feb 04 2022

Formula

a(n+1) = a(n) XOR 2*a(n), where XOR is binary exclusive OR operator. - Paul D. Hanna, Apr 27 2003
a(n) = Product_{e(j, n) = 1} (2^(2^j) + 1), where e(j, n) is the j-th least significant digit in the binary representation of n (Roberts: see Allouche & Shallit). - Benoit Cloitre, Jun 08 2004
a(2*n+1) = 3*a(2*n). Proof: Since a(n) = Product_{k in K} (1 + 2^(2^k)), where K is the set of integers such that n = Sum_{k in K} 2^k, clearly K(2*n+1) = K(2*n) union {0}, hence a(2*n+1) = (1+2^(2^0))*a(2*n) = 3*a(2*n). - Emmanuel Ferrand and Ralf Stephan, Sep 28 2004
a(32*n) = 3 ^ (32 * n * log(2) / log(3)) + 1. - Bret Mulvey, May 17 2008
For n >= 1, A000120(a(n)) = 2^A000120(n). - Vladimir Shevelev, Oct 25 2010
a(2^n) = A000215(n); a(2^n-1) = a(2^n)-2; for n >= 1, m >= 0,
a(2^(n-1)-1)*a(2^n*m + 2^(n-1)) = 3*a(2^(n-1))*a(2^n*m + 2^(n-1)-2). - Vladimir Shevelev, Nov 28 2010
Sum_{k>=0} 1/a(k) = Product_{n>=0} (1 + 1/F_n), where F_n=A000215(n);
Sum_{k>=0} (-1)^(m(k))/a(k) = 1/2, where {m(n)} is Thue-Morse sequence (A010060).
If F_n is defined by F_n(z) = z^(2^n) + 1 and a(n) by (1/2)*Sum_{i>=0}(1-(-1)^{binomial(n,i)})*z^i, then, for z > 1, the latter two identities hold as well with the replacement 1/2 in the right hand side of the 2nd one by 1-1/z. - Vladimir Shevelev, Nov 29 2010
G.f.: Product_{k>=0} ( 1 + z^(2^k) + (2*z)^(2^k) ). - conjectured by Shamil Shakirov, proved by Vladimir Shevelev
a(n) = A000225(n+1) - A219843(n). - Reinhard Zumkeller, Nov 30 2012
From Antti Karttunen, Feb 10 2016: (Start)
a(0) = 1, and for n > 1, a(n) = A048720(3, a(n-1)) = A048724(a(n-1)).
a(n) = A048723(3,n).
a(n) = A193231(A000079(n)).
For all n >= 0: A268389(a(n)) = n.
(End)

A277820 Square array: A(r,1) = A065621(r); for c > 1, A(r,c) = A048724(A(r,c-1)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 3, 2, 5, 6, 7, 15, 10, 9, 4, 17, 30, 27, 12, 13, 51, 34, 45, 20, 23, 14, 85, 102, 119, 60, 57, 18, 11, 255, 170, 153, 68, 75, 54, 29, 8, 257, 510, 427, 204, 221, 90, 39, 24, 25, 771, 514, 765, 340, 359, 238, 105, 40, 43, 26, 1285, 1542, 1799, 1020, 937, 306, 187, 120, 125, 46, 31, 3855, 2570, 2313, 1028, 1275, 854, 461, 136, 135, 114, 33, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Comments

For all n >= 1, A277818 (= A268389(n)+1) gives the (one-based) index of the column where n is located in this array, while A268671(n) gives the (one-based) index of the row where it is on.
This array is obtained when one selects from A277320 the columns 1, 3, 5, 15, 17, 51, ..., i.e., those with an index A001317(k).

Examples

			The top left corner of the array:
   1,  3,   5,  15,  17,   51,   85,  255,   257,   771,  1285,  3855
   2,  6,  10,  30,  34,  102,  170,  510,   514,  1542,  2570,  7710
   7,  9,  27,  45, 119,  153,  427,  765,  1799,  2313,  6939, 11565
   4, 12,  20,  60,  68,  204,  340, 1020,  1028,  3084,  5140, 15420
  13, 23,  57,  75, 221,  359,  937, 1275,  3341,  5911, 14649, 19275
  14, 18,  54,  90, 238,  306,  854, 1530,  3598,  4626, 13878, 23130
  11, 29,  39, 105, 187,  461,  599, 1785,  2827,  7453, 10023, 26985
   8, 24,  40, 120, 136,  408,  680, 2040,  2056,  6168, 10280, 30840
  25, 43, 125, 135, 393,  667, 1965, 2295,  6425, 11051, 32125, 34695
  26, 46, 114, 150, 442,  718, 1874, 2550,  6682, 11822, 29298, 38550
  31, 33,  99, 165, 495,  561, 1619, 2805,  7967,  8481, 25443, 42405
  28, 36, 108, 180, 476,  612, 1708, 3060,  7196,  9252, 27756, 46260
  21, 63,  65, 195, 325,  975, 1105, 3315,  5397, 16191, 16705, 50115
  22, 58,  78, 210, 374,  922, 1198, 3570,  5654, 14906, 20046, 53970
  19, 53,  95, 225, 291,  869, 1455, 3825,  4883, 13621, 24415, 57825
  16, 48,  80, 240, 272,  816, 1360, 4080,  4112, 12336, 20560, 61680
  49, 83, 245, 287, 801, 1379, 4005, 4335, 12593, 21331, 62965, 73247
  50, 86, 250, 270, 786, 1334, 3930, 4590, 12850, 22102, 64250, 69390
  55, 89, 235, 317, 839, 1481, 3675, 4845, 14135, 22873, 60395, 80957
		

Crossrefs

Inverse permutation: A277821.
Transpose: A277819.
Row 1: A001317.
Column 1: A065621, column 2: A277823, column 3: A277825.
Other related tables or permutations: A277880, A277901.

Programs

Formula

A(r,1) = A065621(r); for c > 1, A(r,c) = A048724(A(r,c-1)).
A(r,c) = A048675(A277810(r,c)).
As a composition of other permutations:
a(n) = A277901(A277880(n)).

A280500 Square array for division in ring GF(2)[X]: A(r,c) = r/c, or 0 if c is not a divisor of r, where the binary expansion of each number defines the corresponding (0,1)-polynomial.

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 0, 4, 0, 0, 1, 2, 5, 0, 0, 0, 0, 0, 6, 0, 0, 0, 1, 3, 3, 7, 0, 0, 0, 0, 0, 2, 0, 8, 0, 0, 0, 0, 1, 0, 0, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 1, 0, 2, 7, 5, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 12, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 14, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 0, 3, 0, 7, 15
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2017

Keywords

Comments

The array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Examples

			The top left 17 X 17 corner of the array:
col: 1  2   3  4  5  6  7  8  9 10 11 12 13 14 15 16 17
     --------------------------------------------------
     1, 0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
     2, 1,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
     3, 0,  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
     4, 2,  0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
     5, 0,  3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
     6, 3,  2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
     7, 0,  0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
     8, 4,  0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
     9, 0,  7, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
    10, 5,  6, 0, 2, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
    11, 0,  0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
    12, 6,  4, 3, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
    13, 0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
    14, 7,  0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
    15, 0,  5, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
    16, 8,  0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0
    17, 0, 15, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1
    ---------------------------------------------------
7 ("111" in binary) encodes polynomial X^2 + X + 1, which is irreducible over GF(2) (7 is in A014580), thus it is divisible only by itself and 1, and for any other values of c than 1 and 7, A(7,c) = 0.
9 ("1001" in binary) encodes polynomial X^3 + 1, which is factored over GF(2) as (X+1)(X^2 + X + 1), and thus A(9,3) = 7 and A(9,7) = 3 because the polynomial X + 1 is encoded by 3 ("11" in binary).
		

Crossrefs

Cf. A280499 for the lower triangular region (A280494 for its transpose).

Programs

  • PARI
    up_to = 10440;
    A280500sq(a,b) = { my(Pa=Pol(binary(a))*Mod(1, 2), Pb=Pol(binary(b))*Mod(1, 2)); if(0!=lift(Pa % Pb), 0, fromdigits(Vec(lift(Pa/Pb)),2)); };
    A280500list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A280500sq(col,(a-(col-1))))); (v); };
    v280500 = A280500list(up_to);
    A280500(n) = v280500[n]; \\ Antti Karttunen, Jan 05 2025
    
  • Scheme
    (define (A280500 n) (A280500bi (A002260 n) (A004736 n)))
    ;; A very naive implementation:
    (define (A280500bi row col) (let loop ((d row)) (cond ((zero? d) d) ((= (A048720bi d col) row) d) (else (loop (- d 1)))))) ;; A048720bi implements the carryless binary multiplication A048720.

Formula

A(row,col) = the unique d such that A048720(d,col) = row, provided that such d exists, otherwise zero.
Other identities. For all n >= 1:
A(n, A001317(A268389(n))) = A268669(n).

A305421 GF(2)[X] factorization prime shift towards larger terms.

Original entry on oeis.org

1, 3, 7, 5, 21, 9, 11, 15, 49, 63, 13, 27, 19, 29, 107, 17, 273, 83, 25, 65, 69, 23, 121, 45, 31, 53, 151, 39, 35, 189, 37, 51, 251, 819, 173, 245, 41, 43, 233, 195, 47, 207, 93, 57, 997, 139, 55, 119, 127, 33, 1911, 95, 79, 441, 59, 105, 367, 101, 61, 455, 67, 111, 475, 85, 1281, 269, 73, 1365, 81, 503, 457, 287, 87, 123, 1549, 125, 179, 315
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2018

Keywords

Comments

Permutation of the odd numbers, A005408.
Let a x b stand for the carryless binary multiplication of positive integers a and b, that is, the result of operation A048720(a,b). With n having a unique factorization as A014580(i) x A014580(j) x ... x A014580(k), 1 <= i <= j <= ... <= k, a(n) = A014580(1+i) x A014580(1+j) x ... x A014580(1+k).

Examples

			For n = 12, which by its binary representation '1100' corresponds with (0,1)-polynomial x^3 + x^2, which over GF(2)[X] is factored as (x)(x)(x+1), i.e., 12 = A048720(2,A048720(2,3)) = A048720(A014580(1), A048720(A014580(1),A014580(2))), we then form a(12) as A048720(A014580(2), A048720(A014580(2),A014580(3))) = A048720(3,A048720(3,7)) = 27. Note that x, x+1 and x^2 + x + 1 are the three smallest irreducible (0,1)-polynomials when factored over GF(2)[X], and their binary representations 2, 3 and 7 are the three initial terms of A014580.
		

Crossrefs

Cf. A305422 (a left inverse).
Cf. also A003961, A300841.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305420(n) = { my(k=1+n); while(!A091225(k),k++); (k); };
    A305421(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305420(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };

Formula

For all n >= 1:
A305422(a(n)) = n.
A268389(a(n)) = A007814(n).
a(A000079(n)) = A001317(n).

A305422 GF(2)[X] factorization prime shift towards smaller terms.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 7, 2, 11, 3, 8, 1, 16, 6, 13, 4, 5, 7, 22, 2, 19, 11, 12, 3, 14, 8, 25, 1, 50, 16, 29, 6, 31, 13, 28, 4, 37, 5, 38, 7, 24, 22, 41, 2, 9, 19, 32, 11, 26, 12, 47, 3, 44, 14, 55, 8, 59, 25, 10, 1, 20, 50, 61, 16, 21, 29, 118, 6, 67, 31, 88, 13, 110, 28, 53, 4, 69, 37, 18, 5, 64, 38, 73, 7, 94, 24, 87, 22, 43, 41, 52, 2, 91
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2018

Keywords

Comments

Let a x b stand for the carryless binary multiplication of positive integers a and b, that is, the result of operation A048720(a,b). With n having a unique factorization as f(i) x f(j) x ... x f(k), with 1 <= i <= j <= ... <= k, a(n) = f(i-1) x f(j-1) x ... x f(k-1), where f(0) = 1, and f(n) = A014580(n) for n >= 1.

Crossrefs

Cf. A000079 (positions of ones), A014580, A091225, A268389, A305419, A305421, A305424 (odd bisection), A305425.
Cf. also A064989, A300840.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };

Formula

For all n >= 1:
a(A305421(n)) = n.
a(A001317(n)) = A000079(n).
A007814(a(n)) = A268389(n).

A268669 a(n) = polynomial quotient (computed over GF(2), result is its binary encoding) that is left after all instances of polynomial (X+1) have been factored out of the polynomial that is encoded by the binary expansion of n. (See comments for details).

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 7, 8, 7, 2, 11, 4, 13, 14, 1, 16, 1, 14, 19, 4, 21, 22, 13, 8, 25, 26, 7, 28, 11, 2, 31, 32, 31, 2, 35, 28, 37, 38, 11, 8, 41, 42, 25, 44, 7, 26, 47, 16, 49, 50, 1, 52, 19, 14, 55, 56, 13, 22, 59, 4, 61, 62, 21, 64, 21, 62, 67, 4, 69, 70, 61, 56, 73, 74, 13, 76, 59, 22, 79, 16, 81, 82, 49, 84, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 10 2016

Keywords

Comments

When polynomials over GF(2) are encoded in the binary representation of n in a natural way where each polynomial b(n)*X^n+...+b(0)*X^0 over GF(2) is represented by the binary number b(n)*2^n+...+b(0)*2^0 in N (each coefficient b(k) is either 0 or 1), then a(n) = representation of the polynomial that is left as a quotient when all X+1 polynomials (encoded by 3, "11" in binary) have been divided out.
Each a(n) is one of the "Garden of Eden" patterns of Rule-60 one-dimensional cellular automaton, a seed pattern which after A268389(n) generations yields the configuration encoded in binary expansion of n.
No terms of A001969 occur so all terms are odious (in A000069). Each odious number occurs an infinitely many times.

Examples

			For n = 5 ("101" in binary) which encodes polynomial x^2 + 1, we observe that it can be factored in ring GF(2)[X] as (X+1)(X+1), and thus a(5) = 1, because after dividing both instances of (X+1) off, we are left with the quotient polynomial 1 which is encoded by 1.
For n = 8 ("1000" in binary) which encodes polynomial x^3, we observe that it is not divisible in ring GF(2)[X] by polynomial X+1, thus a(8) = 8.
For n = 9 ("1001" in binary) which encodes polynomial x^3 + 1, we observe that it can be factored over GF(2) as (X+1)(X^2 + X + 1), and thus a(9) = 7, because the quotient polynomial X^2 + X + 1 is encoded by 7 ("111" in binary).
		

Crossrefs

Cf. A001317 (positions of ones).
Cf. A268389 (the highest exponent for (X+1)).
Cf. also A136386.

Programs

  • Mathematica
    f[n_] := If[OddQ@ #, n, f[#/2]] &@ Fold[BitXor, n, Quotient[n, 2^Range[BitLength@ n - 1]]]; Array[f, {85}] (* Michael De Vlieger, Feb 12 2016, after Jan Mangaldan at A006068 *)
  • PARI
    a(n) = {p = Pol(binary(n))*Mod(1,2); q = (x+1)*Mod(1,2); while (type(r = p/q) == "t_POL", p = r); np = Polrev(vector(poldegree(p)+1, k, k--; lift(polcoeff(p, k)))); subst(np, x, 2);} \\ Michel Marcus, Feb 12 2016
    
  • Scheme
    ;; This employs the given recurrence and uses memoization-macro definec:
    (definec (A268669 n) (if (odd? (A006068 n)) n (A268669 (/ (A006068 n) 2))))
    (define (A268669 n) (let loop ((n n)) (let ((k (A006068 n))) (if (odd? k) n (loop (/ k 2)))))) ;; Computed in a loop, no memoization.

Formula

If A006068(n) is odd, then a(n) = n, otherwise a(n) = a(A006068(n)/2).
Other identities and observations. For all n >= 1:
a(n) = A003188(A268670(n)).
A010060(a(n)) = 1. [All terms are odious.]
a(n) <= n.
More precisely, a(A000069(n)) = A000069(n) and a(A001969(n)) < A001969(n).
The equivalence of the following two formulas stems from the additive nature of Rule-60 cellular automaton. Or more plainly, because carryless binary multiplication A048720 distributes over carryless binary sum, XOR A003987:
A048724^A268389(n) (a(n)) = n. [Starting from k = a(n), and iterating map k -> A048724(k) exactly A268389(n) times yields n back.]
A048720(a(n),A048723(3,A268389(n))) = A048720(a(n),A001317(A268389(n))) = n.

A366263 Doudna sequence permuted by Blue code: a(n) = A005940(1+A193231(n)).

Original entry on oeis.org

1, 2, 4, 3, 6, 5, 9, 8, 16, 27, 25, 18, 15, 12, 10, 7, 14, 11, 21, 20, 35, 30, 24, 45, 81, 32, 54, 125, 36, 75, 49, 50, 100, 147, 121, 98, 225, 72, 150, 245, 625, 162, 64, 243, 250, 343, 375, 108, 33, 28, 22, 13, 40, 63, 55, 42, 90, 175, 135, 48, 77, 70, 60, 105, 210, 385, 315, 120, 143, 154, 140, 231, 525, 180
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2023

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) };
    A366263(n) = A005940(1+A193231(n));

Formula

a(n) = A332450(A005940(1+n)).
For all n >= 0, A001222(a(n)) = A234022(n) and A046523(a(n)) = A286601(n).
For all n >= 1, A055396(a(n)) = A277818(n) = 1+A268389(n).
Showing 1-10 of 16 results. Next