cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A188646 Array of a(n)=a(n-1)*k-((k-1)/(k^n)) where a(0)=1 and k=(sqrt(x^2-1)+x)^2 for integers x>=1.

Original entry on oeis.org

1, 1, 1, 1, 13, 1, 1, 181, 33, 1, 1, 2521, 1121, 61, 1, 1, 35113, 38081, 3781, 97, 1, 1, 489061, 1293633, 234361, 9505, 141, 1, 1, 6811741, 43945441, 14526601, 931393, 20021, 193, 1, 1, 94875313, 1492851361, 900414901, 91267009, 2842841, 37441, 253, 1
Offset: 0

Views

Author

Charles L. Hohn, Apr 06 2011

Keywords

Comments

Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; constant k=f(x, y); and initial term a(0)=1; then for all integers x>=1 and y=[+-]1, k may be irrational, but sequence a(n)=a(n-1)*k-((k-1)/(k^n)) always produces integer sequences; y=-1 results shown here; y=1 results are A188647.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is (1/n) * T_{2*k+1}(n), with the Chebyshev polynomials of the first kind (type T). - Seiichi Manyama, Jan 01 2019

Examples

			Square array begins:
     | 0    1       2          3             4
-----+---------------------------------------------
   1 | 1,   1,      1,         1,            1, ...
   2 | 1,  13,    181,      2521,        35113, ...
   3 | 1,  33,   1121,     38081,      1293633, ...
   4 | 1,  61,   3781,    234361,     14526601, ...
   5 | 1,  97,   9505,    931393,     91267009, ...
   6 | 1, 141,  20021,   2842841,    403663401, ...
   7 | 1, 193,  37441,   7263361,   1409054593, ...
   8 | 1, 253,  64261,  16322041,   4145734153, ...
   9 | 1, 321, 103361,  33281921,  10716675201, ...
  10 | 1, 397, 158005,  62885593,  25028308009, ...
  11 | 1, 481, 231841, 111746881,  53861764801, ...
  12 | 1, 573, 328901, 188788601, 108364328073, ...
  13 | 1, 673, 453601, 305726401, 206059140673, ...
  14 | 1, 781, 610741, 477598681, 373481557801, ...
  15 | 1, 897, 805505, 723342593, 649560843009, ...
  ...
		

Crossrefs

Column 1 is A082109(n-1).
Cf. A188644, A188647 (f(x, y) as above with y=1).
Diagonal gives A322904.

Programs

Formula

A(n,k) = 2 * A188644(n,k) - A(n,k-1).
A(n,k) = Sum_{j=0..k} binomial(2*k+1,2*j+1)*(n^2-1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019

Extensions

Edited and extended by Seiichi Manyama, Jan 01 2019

A302329 a(0)=1, a(1)=61; for n>1, a(n) = 62*a(n-1) - a(n-2).

Original entry on oeis.org

1, 61, 3781, 234361, 14526601, 900414901, 55811197261, 3459393815281, 214426605350161, 13290990137894701, 823826961944121301, 51063980650397625961, 3165142973362708688281, 196187800367837541047461, 12160478479832564836254301, 753753477949251182306719201
Offset: 0

Views

Author

Bruno Berselli, Apr 05 2018

Keywords

Comments

Centered hexagonal numbers (A003215) with index in A145607. Example: 35 is a member of A145607, therefore A003215(35) = 3781 is a term of this sequence.
Also, centered 10-gonal numbers (A062786) with index in A182432. Example: 28 is a member of A182432 and A062786(28) = 3781.
a(n) is a solution to the Pell equation (4*a(n))^2 - 15*b(n)^2 = 1. The corresponding b(n) are A258684(n). - Klaus Purath, Jul 19 2025

Crossrefs

Fourth row of the array A188646.
First bisection of A041449, A042859.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k: A000012 (k=1), A001570 (k=2), A077420 (k=3), this sequence (k=4), A302330 (k=5), A302331 (k=6), A302332 (k=7), A253880 (k=8).

Programs

  • Mathematica
    LinearRecurrence[{62, -1}, {1, 61}, 20]
  • PARI
    x='x+O('x^99); Vec((1-x)/(1-62*x+x^2)) \\ Altug Alkan, Apr 06 2018

Formula

G.f.: (1 - x)/(1 - 62*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(4))/4.
a(n) = ((4 + sqrt(15))^(2*n + 1) + 1/(4 + sqrt(15))^(2*n + 1))/8.
a(n) = (1/4)*T(2*n+1, 4), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022
E.g.f.: exp(31*x)*(4*cosh(8*sqrt(15)*x) + sqrt(15)*sinh(8*sqrt(15)*x))/4. - Stefano Spezia, Jul 25 2025

A046173 Indices of square numbers that are also pentagonal.

Original entry on oeis.org

1, 99, 9701, 950599, 93149001, 9127651499, 894416697901, 87643708742799, 8588189040096401, 841554882220704499, 82463790268588944501, 8080609891439495856599, 791817305570802005002201, 77590015336047156994359099, 7603029685627050583442189501
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim_{n->oo} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^4 = 49 + 20 * sqrt(6). - Ant King, Nov 07 2011
a(n)^2 is of the form (2*m-1)*(3*m-2), and the corresponding values of m are 1, 41, 3961, 388081, 38027921, 3726348121, 365144087881, ..., with closed form ((5-2*sqrt(6))^(2n-1)+(5+2*sqrt(6))^(2n-1)+14)/24 (for n>0). - Bruno Berselli, Dec 12 2013
The terms of this sequence satisfy the Diophantine equation m^2 = k * (3k-1)/2, which is equivalent to (6k-1)^2 - 6*(2*m)^2 = 1. Now, with x=6k-1 and y=2*m, we get the Pell-Fermat equation x^2 - 6*y^2 = 1. The solutions (x,y) of this equation are respectively in A046174 and A046175. The indices m=y/2 of the square numbers which are also pentagonal are the terms of this sequence, the indices k=(x+1)/6 of the pentagonal numbers which are also square are in A046172, and the pentagonal square numbers are in A036353. - Bernard Schott, Mar 10 2019
Also, this sequence is related to A302330 by (sqrt(2) + sqrt(3))^(4*n-2) = A302330(n-1)*5 + a(n)*sqrt(24). - Bruno Berselli, Oct 29 2019

Examples

			G.f. = x + 99*x^2 + 9701*x^3 + 950599*x^4 + 93149001*x^5 + ...
99 is a term because 99^2 = 9801 = (1/2) * 81 * (3*81 - 1), so 9801 is the 99th square number, also the 81st pentagonal number, and the second pentagonal square number after 1. - _Bernard Schott_, Mar 10 2019
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 35.

Crossrefs

Cf. A036353 (pentagonal square numbers), A046172 (indices of pentagonal numbers that are also square).
Cf. A046174, A046175 (solutions of x^2 - 6*y^2 = 1).
Cf. A302330.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x)/(1 - 98* x + x^2), {x, 0, 30}], x] (* T. D. Noe, Aug 01 2011 *)
    LinearRecurrence[{98, -1}, {1, 99}, 30] (* Harvey P. Dale, Jul 31 2017 *)
  • PARI
    {a(n) = subst( poltchebi(n) - poltchebi(n-1), 'x, 49) / 48}; /* Michael Somos, Sep 05 2006 */
    
  • PARI
    Vec(x*(x+1)/(x^2-98*x+1) + O(x^30)) \\ Colin Barker, Jun 23 2015

Formula

a(n) = 98*a(n-1) - a(n-2); g.f.: (1+x)/(1-98*x+x^2). - Warut Roonguthai, Jan 05 2001
a(1-n) = -a(n) for all n in Z. - Michael Somos, Sep 05 2006
Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(f(a(n-1),5),5). - Marcos Carreira, Dec 27 2006
a(n) = ((12+5*sqrt(6))/24)*(5+2*sqrt(6))^(2*n)+((12-5*sqrt(6))/24)*(5-2*sqrt(6))^(2*n) for n>=0. - Richard Choulet, Apr 29 2009
a(n+1) = 49*a(n) + 10*sqrt(24*a(n)^2+1) for n > =0 with a(0)=1. - Richard Choulet, Apr 29 2009
a(n) = b such that (-1)^n*Integral_{x=-Pi/2..Pi/2} (cos(2*n-1)*x)/(5-sin(x)) dx = c + b*(log(2)-log(3)). - Francesco Daddi, Aug 01 2011
a(n) = floor((1/24) * sqrt(6) * (sqrt(2) + sqrt(3))^(4n-2)). - Ant King, Nov 07 2011
a(n) = A138288(n)*A054320(n). - Gerry Martens, May 13 2024

A322904 a(n) = Sum_{k=0..n} binomial(2*n+1,2*k+1)*(n^2-1)^(n-k)*n^(2*k).

Original entry on oeis.org

1, 1, 181, 38081, 14526601, 8943235489, 8138661470941, 10287228590683393, 17254778510170993681, 37095265466946847758401, 99474891266913130060486021, 325534304813775692747248543681, 1276941308627620432293188401109401, 5914558735952850788377566338591400673
Offset: 0

Views

Author

Seiichi Manyama, Dec 30 2018

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(2*n+1,2*k+1)*(n^2-1)^(n-k)*n^(2*k): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 03 2019
  • Mathematica
    a[0] = 1; a[n_] := 1/n ChebyshevT[2n+1, n];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jan 02 2019 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n+1, 2*k+1)*(n^2-1)^(n-k)*n^(2*k))}
    
  • PARI
    a(n) = if (n==0, 1, polchebyshev(2*n+1, 1, n)/n); \\ Michel Marcus, Jan 02 2019
    

Formula

For n > 0, a(n) = (1/n) * T_{2*n+1}(n) where T_{n}(x) is a Chebyshev polynomial of the first kind.
For n > 0, a(n) = (1/n) * cosh((2*n+1)*arccosh(n)).
a(n) ~ 4^n * n^(2*n). - Vaclav Kotesovec, Jan 03 2019
Showing 1-4 of 4 results.